ENSINANDO CONCEITOS BÁSICOS DE CRIPTOGRAFIA NO ENSINO MÉDIO PROFISSIONAL


ENSEÑANDO CONCEPTOS BÁSICOS DE CRIPTOGRAFÍA EN LA ESCUELA SECUNDARIA PROFESIONAL


TEACHING BASIC CONCEPTS OF CRYPTOGRAPHY IN PROFESSIONAL HIGH SCHOOL


Regina Paiva Melo MARIN1 Jackson Gomes Soares SOUZA2 Luciano Heitor Gallegos MARIN3


RESUMO: A criptografia está presente em diversas operações realizadas diariamente pelas pessoas, tais como compras online ou no desenvolvimento de diálogos utilizando equipamentos computacionais e a Internet como meio. Embora a criptografia tenha muita importância no contexto contemporâneo, o ensino do tema é novo para os estudantes do Ensino Médio profissional. Neste aspecto, um dos maiores desafios está em motivar os alunos na utilização dos métodos criptográficos na sala de aula. O objetivo deste trabalho está em investigar o uso e a aprendizagem da criptografia por alunos do ensino médio profissional. Para tanto, foi utilizada a metodologia do tipo Survey com perguntas autoavaliativas sobre a motivação, compreensão, e o uso de ferramentas computacionais contendo conceitos básicos de criptografia. A análise das respostas sugere que a maioria dos alunos considera o tema criptografia de difícil aprendizado, mas todos foram capazes de praticar e aprender pelo menos uma das técnicas criptográficas ensinadas.


PALAVRAS-CHAVE: Prática. Ensino. Aprendizagem. Criptografia.


RESUMEN: La criptografía está presente en varias operaciones que realizan diariamente las personas, como la compra online o en el desarrollo de diálogos utilizando equipos informáticos e Internet como medio. Aunque la criptografía es muy importante en el contexto contemporáneo, la enseñanza del tema es nueva para los estudiantes de la escuela secundaria profesional. En este sentido, uno de los mayores desafíos es motivar a los estudiantes a utilizar métodos criptográficos en aula. El objetivo de este trabajo es de investigar el uso y aprendizaje de la criptografía por parte de estudiantes de bachillerato professional. Por eso, se utilizó la metodología tipo Survey con preguntas de autoevaluación sobre motivación, comprensión y uso de herramientas computacionales que contienen conceptos básicos de


1 Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF GOIANO), Urutaí – GO – Brasil. Professora no curso de Informática. Doutorado em Ciência da Computação (CENTRALESUPÉLEC) – França. ORCID: https://orcid.org/0000-0002-1303-052X. E-mail: regina.marin@ifgoiano.edu.br

2 Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Campinas – SP – Brasil. Docente no Curso de Informática. Doutorando em Educação Escolar (UNESP). ORCID: https://orcid.org/0000-0003-4952- 8618. E-mail: jackson@ifsp.edu.br

3 Universidade de Fortaleza (UNIFOR), Fortaleza – CE – Brasil. Professor do Laboratório de Ciências de Dados e Inteligência Artificial (LCDIA). Doutorado em Engenharia (RENNES 1) – França. ORCID: https://orcid.org/0000-0002-4331-6588. E-mail: luciano.gallegos@unifor.br


criptografía. El análisis de las respuestas sugiere que la mayoría de los estudiantes encuentran la criptografía difícil de aprender, pero todos pudieron practicar y aprender al menos una de las técnicas criptográficas enseñadas.


PALABRAS CLAVE: Prácticas. Enseñando. Aprendizaje. Criptografía.


ABSTRACT: The cryptography is present in several operations performed daily by people, such as online shopping or in dialogues using computer equipment and the Internet as a proxy. Although cryptography is very important in the contemporary context, the teaching of the cryptography subject is new for students at professional high school. In this regard, one of the biggest challenges is to motivate students in using the cryptographic methods in the classroom. The objective of this work is to investigate the use and learning of cryptography by students at professional high school. For this purpose, the Survey methodology was used with self-evaluative questions about the motivation, understanding and the use of computational tools containing basic cryptography concepts. An analysis of the responses suggests that most students find the cryptography subject difficult to learn, but all of them were able to practice and learn at least one of the cryptographic techniques taught.


KEYWORDS: Practices. Teaching. Learning. Cryptography.


Introdução


A Internet revolucionou a nossa sociedade, permitindo acesso à informação, em grande escala, e a recursos tecnológicos que oferecem grandes oportunidades de negócios e serviços (LAUDON; LAUDON, 2014). As atividades realizadas vão desde compras e operações bancárias até serviços virtuais de informações. Neste cenário, heterogêneo e dinâmico, a segurança da informação deve permitir a salvaguarda dos usuários quanto aos serviços ofertados envolvendo dados pessoais, profissionais e financeiros. Neste aspecto, a criptografia é um dos principais mecanismos em uso nas aplicações digitais, utilizada por indivíduos e empresas para a proteção das informações, seja na comunicação ou no armazenamento de dados (CERT, 2012).

Embora a criptografia possa ser largamente explorada em disciplinas envolvendo a segurança da informação para proteção de dados, pesquisas na área da educação indicam que os alunos não se sentem motivados neste tema devido, principalmente, ao número limitado de horas de aula, dificuldades matemáticas e a falta de ferramentas para obter prática na criptografia (SONG; DENG, 2009; OLEJAR; STANEK, 1999).

Diante deste cenário, propõe-se neste artigo investigar o uso e a aprendizagem da criptografia por alunos do ensino médio profissional como meio de concretizar os saberes teóricos e práticos da disciplina de Gerenciamento e Segurança da Informação do Instituto




Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP) – Campus Campinas durante o primeiro semestre de 2019. A abordagem proposta nesta pesquisa baseia-se na complementaridade das práticas pedagógicas de seminários e das aulas práticas colaborativas. Espera-se que os seminários permitam a exposição dos trabalhos desenvolvidos pelos escolares, contando com as ponderações do professor e do debate construtivo entre os próprios alunos. Segundo Masseto (2012), a prática pedagógica dos seminários é uma técnica riquíssima de aprendizagem que permite ao estudante desenvolver sua capacidade de pesquisa, de produção de conhecimento, de comunicação, de organização e fundamentação de ideias, e de elaboração de relatório de pesquisa, de forma coletiva.

Acrescenta-se aos seminários as atividades práticas para ajudar a diminuir a existência de aulas mecânicas. Para tanto, o uso adequado das tecnologias computacionais aliada à prática colaborativa pode auxiliar nos processos de ensino e aprendizagem ressaltando-se, porém, que o êxito nas tarefas mediadas depende da troca entre os participantes acerca do aprendizado, indo além da mera utilização da tecnologia para a troca de ideias, experiências e conhecimentos adquiridos (GIANOTTO; DINIZ, 2010).

Neste trabalho foi utilizada a metodologia Survey através de questionários autoavaliativos que visam obter informações quanto ao uso, motivação e aprendizagem da criptografia pelos alunos, organizado em quatro seções. Nas Seções subsequentes: na 2 é apresentada a fundamentação teórica, destacando-se o tema criptografia. Na Seção 3 são descritos os aspectos metodológicos para a formação de grupos de trabalho, as atividades realizadas em sala de aula, e o processo a ser seguido para a utilização da criptografia pelos alunos. A Seção 4 apresenta a análise qualitativa da aprendizagem da criptografia por alunos do ensino médio profissional. E na Seção 5 as discussões finais são pormenorizadas.


Conceitos básicos de criptografia


A criptografia é definida como um conjunto de técnicas que permitem tornar incompreensível uma mensagem originalmente escrita com clareza, de forma a permitir que apenas o destinatário a decifre e compreenda (LAUDON; LAUDON, 2014). Embora a criptografia moderna possa ser aplicada a diversas áreas do conhecimento humano, o conceito é o mesmo de sua origem: garantir a comunicação segura em um meio inseguro (BELLARE; ROGAWAEY, 2005).

Na área das ciências da computação e da tecnologia da informação, o algoritmo criptográfico é uma função matemática aplicada à informação, para realizar a cifragem e a




decifragem dos dados. Enquanto o processo de cifrar consiste em transformar dados legíveis em ilegíveis, o processo de decifragem realiza o processo oposto. Estes processos estão baseados na utilização de chaves de acesso que interagem com os algoritmos criptográficos. As chaves de acesso possuem diferentes tamanhos e seu grau de segurança está associado com sua extensão em bits. Segundo a Associação Brasileira de Normas Técnicas – ABNT (2013), a criptografia pode ser utilizada para alcançar diversos objetivos de segurança da informação, principalmente:



Emitter

Readable text

Readable text

Receiver

Figure 2 – Asymmetric encryption


Bob’s public key

Codded text

Bob’s private key

Source: Devised by the authors (2017)


The use of an asymmetric encryption algorithm allows the creation of a digital signature. The digital signature guarantees the authenticity of the message. The way to sign a



message is to encrypt it with the private key. That way, anyone who has the public key knows that the message was actually sent by the sender. The three common digital signature algorithms are Digital Signature Algorithm (DSA), Rivest-Shamir-Adleman (RSA) and Elliptic Curve Digital Signature Algorithm (ECDSA).

However, there is the possibility of creating signed random messages using only the public key of an issuer. To avoid this problem, the hash function was created. Hash is a unidirectional mathematical function that is relatively easy to calculate, but quite difficult to reverse.

There are many modern hashing algorithms widely used today. Two of the most popular are MD5 and SHA 256. So, to sign a message, you first create its hash, then the message is sent along with an attachment, which is the output of the hash function encrypted with the sender's private key. The receiver, upon receiving the message, hash and decrypts the signature using the sender's public key. If the value is the same as that obtained from the hash of the received message, we have the authenticated sender.


Methodological procedures


Currently, it is essential to prepare students to work and manipulate digital technologies. In this context, the methodological procedures used in the work with the students were based on two pedagogical practices: classroom seminars and practical classes.

The seminars aim to develop in students competences for reflection, discussion and debate on themes that are often considered complex, stimulating research, argumentation and the sharing of information between students and teachers. This type of practice involves two important activities that are research and creation. Gessinger (2008) defines research as the execution of written reports on a certain topic and creation as the development of content, such as models, experiments, knowledge, etc.

The practical classes are intended for pedagogical work in groups to bring teaching and learning closer together and involve two important activities: debate and presentation. While the debate consists of a discussion between one or more groups involving different points of view, a presentation consists of an oral dissertation on a certain topic through methods such as posters and slides (GESSINGER, 2008).

The seminars and practical classes were conducted in the technical course in information technology in the modalities concomitant/subsequent to high school at the Federal Institute of Education, Science and Technology of São Paulo - IFSP, Campus

RPGE– Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. 2, p. 1277-1290, May/Aug. 2021. e-ISSN: 1519-9029



Campinas, in the subject of Information Management and Security, during the first semester of 2019. The group of students consisted of seven women and 10 men. Regarding age, 16 students are between 15 and 20 years old, and one student is between 45 and 50 years old. It is noteworthy that this article is the result of a research developed in the Specialization Postgraduate Program – Pedagogical Formation for Unlicensed Graduates of the Paula Souza Center, in São Paulo, during 2019, with the due approval of the IFSP, as well as of all the participants.


Seminar


The seminar activity in the class aimed to assist students in the process of classifying the main types of cryptography. Traditional encryption aimed to study the algorithms of substitution ciphers (letters are replaced), transposition (letters are rearranged) and one-time cipher (clear text, combined with a secret key, creates a new character that is combined with the clear text to generate the encoded text). The classification regarding modern cryptography, on the other hand, contemplates symmetric and asymmetric algorithms using block ciphers and stream ciphers. The execution of the seminars was conducted according to the following work schedule and guidelines contained in Table 1.


Table 1 – Execution of seminars


Period

Seminars


First week (28/03/2019)

Considering that the classroom has the proper characteristics for the establishment of group tasks (SILVA et al., 2017), students were organized into small groups regarding the historical context and the functioning of cryptographic techniques. Each group chose a cryptography topic to investigate. Afterwards, the groups were instructed to reflect on the practical use of the types of cryptography, with examples that are simple to understand. The various materials obtained consisted of texts taken from books, magazines and Internet

pages.


Second week (04/04/2019)

“First Seminar”, in which part of the students presented and delivered reports on the historical or classical context of the development of cryptography. For example, the students who chose the theme 'replacement cipher' noted that this was used by the Hebrews between 500 and 600 BC and had importance in the communications of the Roman Empire (Cesar's cipher, 100-44 BC), especially

when few people at the time they knew how to read (ALVARENGA, 2017).


Third week (09/04/2019)

“Second Seminar”, aimed at the presentation and delivery of reports, by the groups on modern cryptography. In this seminar, students explained the bases for the calculation of modular arithmetic for the operation and development of cryptographic techniques, as well as understanding their application in

electronic transactions

Source: Devised by the authors (2021)





In this way, an approach was applied to bring teaching and learning closer together, expanding the involvement with the content of the discipline, stimulating the cognitive and social development of students who, in turn, satisfactorily achieved the objectives of exercise and knowledge absorption, working collaboratively and showing interest in carrying out the proposed activities.


Practical classes


Currently, the types of encryption used are symmetric and asymmetric (STALLINGS, 2015). Thus, the activities carried out in practical classes consisted of stimulating the development of learning about software for symmetric and asymmetric cryptography, through experimentation and practices in laboratories.

Students were divided into groups and instructed to read the practical guides for using the software. Thus, the success in tasks mediated by the software implies an emphasis on the exchange among participants about learning through information technology resources. The execution was conducted according to the following work schedule and guidelines contained in Table 2.


Table 2 – Execution of practical activities


Period

Practical Activities


First week (23/05/2019)

In the first practical activity, the groups used the practical guide to the VeraCrypt symmetric encryption software, with 12 pages, describing the download sites, installation and use of cryptographic algorithms and hash functions (VERACRYPT, 2018). VeraCrypt arose from the need to keep information encrypted on hard disks for long periods. Its strength lies in the creation and use of files as virtual volumes (drives or disks) to encrypt entire hard disk or pen-drive partitions, protecting all files contained in the virtual volume. As for the size of the key, it varies according to the set of selected algorithms. Using the software, the students created a file and mounted a virtual volume for display on the file manager's drive. With the end of the work, the

students dismantled the entire process carried out.


Second week (06/06/2019)

In the second practical activity, the groups used the Open Pretty Good Privacy

- Open PGP practical guide, using the Gnu Privacy Guard - GPG software, which is free and open source (OPENPGP, 2018). The seven-page how-to guide to GPG software and its likes describes download sites, installing browser plugins, generating public keys, and managing keys for secure emailing. The OpenPGP standard is defined by Request for Comments – RFC 4880 (FINNEY et al., 2007). RFC 4880 uses asymmetric cryptography and an appropriately characteristic private key to provide secure electronic communication service. It is important to emphasize that some students used other asymmetric software due to prior knowledge of the subject. Asymmetric

cryptography uses the concept of public keys, which are distributed to people




with whom you want to exchange data or messages, and the private key is on your machine (or preferably cryptographic token or SmartCard) and should not

be distributed.

Source: Devised by the authors (2021)


Analysis of results


Aiming to evaluate the learning of the proposed pedagogical practices, two self- evaluative questionnaires were elaborated for students on Google Forms. The first questionnaire is about the theoretical knowledge of cryptography studied in the seminars. The second questionnaire is about the use of cryptographic software used in practical classes. The questionnaires were answered by 17 students, with 10 students claiming to have some prior knowledge about cryptography and the other seven students claiming not to know the subject. The results of the qualitative analyzes are shown graphically below.

Ease of use and learning how encryption works is shown in the graphs in Figure 3. The graph on the left shows that most students find encryption difficult (15 students), only two students find it easy to use. However, the graph on the right indicates that all (17 students) claim to have learned the operation of at least one cryptographic technique taught in the classroom.


Você considera a criptografia fácil

de usar?

Voce entendeu o funcionamento de alguma

técnicas criptográfica ensinada em sala de aula

Figure 3 – Student Opinions on Ease of Use and Learning Encryption



Sim

Difícil

Fácil

Não

Respostas dos Alunos

Respostas dos Alunos

20


15

20

15

10

10

5

5

0

0

Easy

Hard

Yes

No

Student’s answers Student’s answers

Did you understand how some cryptographic techniques taught in the classroom work?

Do you find encryption easy to use?

Frequência

Frequência

Source: Research results (2019)


The usefulness of the cryptography type is shown in Figure 4. It is observed that symmetric cryptography is considered the most useful by most students (six students), followed by asymmetric cryptography (four students) and steganography (four students). Note that classic encryption types were considered less useful: only one student chose the transpose cipher, one student the replacement cipher, and one student the one time pad cipher. The





results suggest that students understood the importance of modern computer-mediated cryptography and its everyday applications.


Figure 4 – Students' Opinions on the Usefulness of the Encryption Type



Transposition Steganography Asymmetric Symmetric Substitution One Time Pad cipher Encryption Encryption Cipher cipher


Student’s answers

What type of encryption do you find most useful?

Source: Research results (2019)


The understanding of the cryptographic tools used in laboratory practical classes is presented in the graphs in Figure 5. The graph on the left indicates that most students find the VeraCrypt tool difficult to use for the purpose of encrypting files on disk. The graph on the right shows that asymmetric cryptography was considered easy to use, even though it was necessary to understand the generation and distribution of cryptographic keys to send secure email. This result in relation to asymmetric tools can be explained by the fact that some students have previous knowledge about other asymmetric software, which were allowed in the activity. In this way, students who already knew the subject deepened and updated their concepts, as well as helped other students, who were not familiar with asymmetric cryptography, in the acquisition of new knowledge.


Entendimento da ferramenta Simétrica

Veracrypt

Entendimento das ferramentas Assimétricas

Understanding the Veracrypt Symmetric Tool

Understanding of asymmetric tools

12


10

8

7

6

5

4

3

2

1

0

8


6


4


2


0

Easy Very Easy Hard Very hard Easy

Very Easy

Hard Very hard

Frequência

Figure 5 - Student Opinions on Understanding Disk File Encryption and Secure Email Sending












Fácil Muito fácil Dificil Muito Dificil

Respostas dos Alunos

Fácil Muito fácil Dificil Muito Dificil


Respostas dos Alunos

Frequência

Source: Devised by the authors



The importance of both cryptographic tools used in laboratory practical classes is shown in Figure 6, reinforcing that the majority (13 students) consider both tools important. Thus, it appears that students understood the different purposes of the types of modern cryptography taught. The results also indicate that only two students consider that the most important thing in cryptography is to encrypt files on disk with the VeraCrypt tool. In contrast, and in the same proportion, two other students consider that the most important thing in cryptography is to send secure email with some asymmetric software.


Figure 6 – Students' opinions on the importance of the cryptographic tools taught


The two tools (Veracrypt Veracrypt software to Asymmetric software for and Asymmetric Software) encrypt files encrypting files

What type of cryptographic tool is most useful?

Source: Research results (2019)


The answers obtained showed that the understanding of these scientific-technological foundations of security, in information processes on the subject of cryptography, should be motivating and contextualized in terms of theoretical concepts and practical applications.


Final considerations


In this article, the concepts of information security, cryptography and its use for high school students were presented. Specifically, emphasis was placed on cryptography as it is an important foundation for today's society. The encryption tools presented to the students, together with their usage guides, allow them to work with data and message encryption, ensuring the confidentiality of information.

As cryptography is present in different equipment, whether they are fixed or mobile electronic computing devices, the involvement of students in carrying out the activities was




notorious, as well as the concentration required for its understanding. The two pedagogical practices carried out, seminar and practical classes, were well received, despite the different degrees of involvement and participation of students. The seminars explored the historical part, so that the student can understand that cryptology arises out of necessity and develops as technology advances. The practical classes allowed to apply the subjects already worked in the theoretical aspect, with software widely used in the labor market.

Through the general analysis of the questions in the questionnaires, it can be concluded that the pedagogical practices used were effective for the construction of students' knowledge about cryptography, everyone could learn at least one cryptographic technique taught. It is noteworthy, however, that some students find it difficult to use encryption tools, probably due to the complexity of the subject and the reduced time for teaching cryptography.


ACKNOWLEDGMENTS: The authors are grateful to: Federal Institute of Education, Science and Technology of Goiás (IF Goiano); and to the Federal Institute of Education, Science and Technology of São Paulo (IFSP), for the support they provided during the research that made this research possible.


REFERENCES


ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR ISO/IEC

27001: Tecnologia da informação - Técnicas de segurança - Sistemas de gestão de segurança da informação - Requisitos. Rio de Janeiro, RJ: ABNT, 2013.


ALVARENGA, L. G. Criptografia clássica e moderna. Clube de Autores, 2017.


BASTA, A.; BASTA, N.; BROWN, M. Segurança de computadores e teste de invasão. São Paulo, SP: Cengage Learning, 2014.


BELLARE, M.; ROGAWAEY, P. Introduction to modern cryptography. Davis, United States of America: University of California at Davis, 2005. Available: https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf. Access: 06 Feb. 2019.


CERT – CENTRO DE ESTUDOS E TRATAMENTO DE INCIDENTES DE SEGURANÇA

NO BRASIL. Cartilha de Segurança para Internet versão 4.0. São Paulo, SP: Comitê Gestor da Internet no Brasil, 2012. Available: https://cartilha.cert.br/livro/cartilha-seguranca- internet.pdf. Access: Access: 04 Apr. 2019.


FINNEY, H. et al. OpenPGP Message Format. RFC 4880. 2007. Available: https://datatracker.ietf.org/doc/html/rfc4880. Access: 23 May 2019.





GESSINGER, R. M. Atividade em grupo. In: GRILLO, M. C. et al. A Gestão da Aula Universitária na PUCRS. Porto Alegre, RS: EdiPUCRS, 2008. p. 109-118.


GIANOTTO, D. E. P.; DINIZ, R. E. S. Formação inicial de professores de biologia: a metodologia colaborativa mediada pelo computador e a aprendizagem para a docência. Revista Ciência & Educação, v. 16, n. 3, p. 631–648, 2010. Available:

http://www.scielo.br/j/ciedu/a/m8BHLB9MbCb5zYhxKsVvcsk/abstract/?lang=pt. Access: 06

June 2019.


LAUDON, K.; LAUDON, J. Sistemas de informações gerenciais. São Paulo, SP: Pearson Prentice Hall, 2014.


MASSETO, M. T. Competências pedagógicas do professor universitário. São Paulo, SP: Summus Editora, 2012.


OLEJAR, D.; STANEK, M. Some aspects of cryptology teaching. In: IFIP WG 11.8 1st World Conference on Information Security Education WISE1. 1999. p. 1-9. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.4050&rep=rep1&type=pdf. Access: 06 Aug. 2019.


OPENPGP. OpenPGP. 2018. Available: https://www.openpgp.org. Access: 20 May 2019.


SILVA, V. et al. Mineração de dados utilizando análise de redes social para identificar tendências de participação em aulas presenciais. In: BRAZILIAN SYMPOSIUM ON COMPUTERS IN EDUCATION, 28., 2017, Recife. Anais […]. Recife, PE, 2017. p. 1467-

1476. Available: https://br-ie.org/pub/index.php/sbie/article/view/7677. Access: 30 Sep. 2020.


SONG, X.; DENG, H. Taking flexible and diverse approaches to get undergraduate students interested in cryptography course. In: First International Workshop on Education Technology and Computer Science. 2009. v. 2, p. 490-494. Available: https://ieeexplore.ieee.org/document/4959085. Access: 09 Apr. 2019.


STALLINGS, W. Criptografia e segurança de redes: princípios e práticas. 6. ed. São Paulo, SP: Pearson Education do Brasil, 2015. 578 p.


VERACRYPT. Veracrypt: versão 1.18 de 2018. Available: https://www.veracrypt.fr/en/Home.html. Access: 20 May 2019.




How to reference this article


MARIN, R. P. M.; SOUZA, J. G. S.; MARIN, L. H. G. Teaching basic concepts of cryptography in professional high school. Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. 2, p. 1277-1290, May/Aug. 2021. e-ISSN:1519-9029. DOI:

https://doi.org/10.22633/rpge.v25i2.14469


Submitted: 17/11/2020 Required revisions: 14/05/2021 Approved: 31/05/2021 Published: 01/08/2021