DEVELOPING CREATIVE ACTIVITY ABILITIES OF STUDENTS IN HIGHER EDUCATIONAL ESTABLISHMENTS


DESENVOLVIMENTO DE HABILIDADES DE ATIVIDADE CRIATIVA DE ESTUDANTES EM ESTABELECIMENTOS DE ENSINO SUPERIOR


DESARROLLO DE LAS HABILIDADES DE ACTIVIDAD CREATIVA DE ESTUDIANTES EN ESTABLECIMIENTOS EDUCATIVOS SUPERIORES


Sergey Nikolaevich DOROFEEV1 Rustem Adamovich SHICHIYAKH2 Leisan Nafisovna KHASIMOVA3


ABSTRACT: The article discusses methods of solving geometric problems with the active use of methods such as analysis and synthesis, analogy and generalization, based on theoretical thinking about the principle of rising from simple to complex, to develop students' capacity for the creative activity. The authors developed problem systems, focused on building the capacity to "make" independent discoveries both in the process of solving a problem and in the phase of research for the result. The problem system developed aims to find a way to solve a more complex problem, after a similar method been used in another simpler or more particular problem. Participants in the experiment are future masters in pedagogical education (profile "Mathematics Education") at Togliatti State University. The article shows that the most effective methods to prepare future masters in mathematics education for creative professional activity can be methods such as scientific knowledge as analogy and generalization. It was found that in the learning process of solving geometric problems inserted in the developed system, students present superior indicators of the level of formation of creative activity, as a result of the development of the capacity of the future teacher of pedagogical education (profile "Mathematics Education") to analogy and its application in specific situations, its ability to use established properties, formed skills and abilities, techniques and methods of action in relation to another object under new conditions and for new purposes, the use of mathematical concepts and theorems in specific problems increasingly diverse.


KEYWORDS: Geometry. Task. Analogy. Generalization. Creative activity.


RESUMO: O artigo discute métodos de resolução de problemas geométricos com o uso ativo de métodos como análise e síntese, analogia e generalização, com base no pensamento teórico sobre o princípio da ascensão do simples ao complexo, a fim de desenvolver a


image

1 Togliatti State University (TSU), Tolyatti – Russia. Professor of the Department of Higher Mathematics and Mathematical Education. Doctor of Pedagogical Sciences. ORCID: https://orcid.org/0000-0003-1925-9428. E- mail: komrad.dorofeev2010@yandex.ru

2 Kuban State Agrarian University named after I.T. Trubilin (KUBSAU), Krasnodar – Russia. Associate Professor of the Department of Management. ORCID: http://orcid.org/0000-0002-5159-4350. E-mail: 651728@mail.ru

image

3 Kazan Federal University (KPFU), Kazan – Russia. Professor of the Department of Legal and Social Sciences. ORCID: http://orcid.org/0000-0002-1538-1788. E mail: leisan@mail.ru


image

image


capacidade dos alunos para a atividade criativa. Os autores desenvolveram sistemas de problemas, focados na formação da capacidade de "fazer" descobertas independentes tanto no processo de resolução de um problema quanto na fase de pesquisa do resultado da solução. O sistema de problemas desenvolvido visa encontrar uma maneira de resolver um problema mais complexo após um método semelhante ter sido usado em relação a outro problema mais simples ou particular. Os participantes do experimento são futuros mestres em educação pedagógica (perfil "Educação Matemática") na Universidade Estadual Togliatti. O artigo mostra que os métodos mais eficazes de preparar futuros mestres em educação matemática para a atividade profissional criativa podem ser métodos em que o conhecimento científico é tomado como analogia e generalização. Verificou-se que no processo de aprendizagem da resolução de problemas geométricos inseridos no sistema desenvolvido, os alunos apresentam indicadores superiores no nível de formação da atividade criativa, em resultado do desenvolvimento da capacidade do futuro mestre de educação pedagógica (perfil "Educação Matemática") à analogia e sua aplicação em situações específicas, sua capacidade de usar as propriedades estabelecidas, habilidades e capacidades formadas, técnicas e métodos de ação em relação a outro objeto em novas condições e para novos fins, o uso de conceitos matemáticos e teoremas em problemas específicos cada vez mais diversos.


PALAVRAS-CHAVE: Geometria. Tarefa. Analogia. Generalização. Atividade criativa.


RESUMEN: El artículo discute métodos para la resolución de problemas geométricos con el uso activo de métodos como análisis y síntesis, analogía y generalización, basados en el pensamiento teórico sobre el principio de ascenso de simple a complejo para desarrollar la capacidad de los estudiantes para la actividad creativa. Los autores han desarrollado sistemas de problemas, enfocados en la formación de su capacidad para "hacer" descubrimientos independientes tanto en el proceso de resolución de un problema como en la etapa de investigación del resultado de la solución. El sistema de problemas desarrollado tiene como objetivo encontrar una manera de resolver un problema más complejo, después de que se haya utilizado un método similar en relación con otro problema más simple o particular. Los participantes en el experimento son futuros maestros de la educación pedagógica (perfil "Educación Matemática") en la Universidad Estatal de Togliatti. El artículo muestra que los métodos más efectivos para preparar a los futuros maestros de la educación matemática para la actividad profesional creativa pueden ser métodos de conocimiento científico como la analogía y la generalización. Se reveló que en el proceso de aprendizaje para resolver problemas geométricos incluidos en el sistema desarrollado, los estudiantes demuestran indicadores más altos del nivel de formación de la actividad creativa, como resultado del desarrollo de la capacidad del futuro maestro de la educación pedagógica (perfil "Educación Matemática") a la analogía y su aplicación en situaciones específicas, su capacidad para utilizar las propiedades establecidas, destrezas y habilidades formadas, técnicas y métodos de acción en relación con otro objeto en nuevas condiciones y para nuevos propósitos, el uso de conceptos matemáticos y teoremas en problemas específicos cada vez más diversos


image

PALABRAS CLAVE: Geometría. Tarea. Analogía. Generalización. Actividad creativa.


image

image


Introduction


Theoretical research and generalization of our own pedagogical experience and pedagogical experience of famous teachers and teachers of mathematics (DOROFEEV et al., 2018; GLAZKOV; EGUPOVA, 2017; KALINKINA, 1995; KALMYKOVA, 2013) led us to

understand that the modern master pedagogical education (profile "Mathematical Education") must possess at a sufficiently high level both the mathematical apparatus and the methods of teaching mathematical disciplines, be able to show their trust in students, act as a source of human experience accumulated throughout the entire time of human existence on earth, which can use to enrich their knowledge and understanding of the environment; to feel the emotional mood of each student, to be able to openly express, accept and understand their mental state and their experiences, should be able to show their creative resourcefulness in the process of teaching mathematical methods of cognition of the surrounding world (DOROFEEV, 2000; VYGOTSKY, 2007; TEMERBEKOVA et al., 2013; VAGANOVA et al., 2020). The concept

of creative activity is quite complex and multifaceted, the meaning and content of this concept is constantly being refined, replenished and improved. The levels of manifestation of creative activity by students depend on many internal and external factors, both dependent on them and independent, the level of ontogenetic development of everyone, his psychophysiological and mental state, individual psychological characteristics, the level of upbringing and preparedness to perceive a particular mathematical fact. or a concept, the level of development of his intellectual abilities, etc. (KALINKINA, 1995; KALMYKOVA, 2013).

Psychological science provides our attention with many different approaches to the interpretation of the concepts of "creative activity" and "creative activity". As a rule, creative activity is associated with the manifestation of the active nature of creative activity in certain forms. From a psychological point of view, creative activity can be interpreted either as a set of properties of the human nervous system, or as a certain mental state of a person, or as a characteristic of a person's vital activity, or as its property. Thus, it can be argued that creative activity is determined by the action of both internal and external factors, each of which is based on the most important thing - the desire and ability of the student to discover new facts and new knowledge previously unknown to him (DAVYDOV, 2000; PODLASY, 2001; WINTER, 2006).

image

In the process of the formation of creative activity, all mental processes are involved simultaneously or in a certain sequence, conditioned by our sensations, perception, attention, imagination, emotions, memory, thinking. When they interact, objects of the real world are


image

image


reflected and their images are formed in our consciousness, personal perception of reality at a given moment in time and in each situation. Modern pedagogical science knows various means, techniques, methods and forms that contribute to the development of creative activity. However, until now we do not know to what extent, in what conditions and when it is possible to use this or that teaching method, this or that form of organization of educational and cognitive activity, this or that means of teaching, in order to say with confidence that the chosen by us in a certain system means, methods and forms with great efficiency contribute to the formation of creative activity (ANDREEV, 1988; DAVYDOV, 2000; LERNER, 2016; MUDRIK, 2004).


Methodology


The development of students' creative activity largely depends on teaching mathematical concepts and methods of the type of scientific knowledge with the active use of methods such as analysis and synthesis, analogy and generalization, concretization and comparison, based on theoretical thinking on the principle of ascent from simple to complex, from the abstract to the concrete, from the particular to the general, using advanced learning technologies, for example, student-centered learning, differentiated learning, learning through UDE, computer and digital technologies (DAVYDOV, 2000; MUDRIK, 2004; UTEEVA, 2015; VAGANOVA et al., 2020).

In our concept of the formation of creative activity in future masters of pedagogical education, we adhere to a personal approach and a humanistic orientation in preparing them for the organization of creative activity. The ability of the future Master of Pedagogical Education (profile "Mathematical Education") to analogy and its application in specific situations is characterized by his ability to use established properties, skills and abilities formed, techniques and methods of action in relation to another object in new conditions and for new purposes. The development of the ability to analogy is facilitated by the process of using mathematical concepts and theorems in more and more diverse specific problems (DAVYDOV, 2000; DOROFEEV, 2000; LODATKO, 2015; MENCHINSKAYA, 2004).

image

These can be problems of finding a way to solve a more complex problem, after a similar method has been used in relation to another simpler or particular problem. The ability of the future master of pedagogical education (profile "Mathematical Education") to abstraction and its application in specific situations is characterized by his ability to highlight certain features in the object under study. The development of the ability to abstraction is


image

image


facilitated by the teacher's ability to lead his pupils to each new concept, to each new theorem with the help of well-chosen examples for comparison, highlighting common features or general regular connections between features and formulating the necessary conclusion by the students themselves. This approach to the introduction of new concepts and previously unknown facts to students develops the ability not only to abstraction, but also to generalize. The ability of the future teacher of mathematics to generalize and apply it in specific situations is characterized by the ability to identify common features in a number of objects and group objects on this basis. The wider and more diverse the generalizations, the more independence the students themselves show, the more effective is the effect of the method of summing up a concept with the help of examples on the formation of their creative activity. It is recommended to move from generalizations, which are based on specific examples and lead to particular conclusions, to generalizations, which are based on several concepts and facts, gradually expanding the circle of generalized material (DAVYDOV, 2000; LODATKO, 2015; SAMYGIN; STOLYARENKO, 2012; UTEEVA; ORAZYMBETOVA, 2012).


Results


image

The formation of creative activity in the future master of pedagogical education (profile "Mathematical education") is inextricably linked with the formation of the ability to compose a whole from its parts and break the whole into its constituent parts. As you know, students get acquainted with the first ideas about the category of the whole in basic school when studying fractions. There they learn to break a whole, for example, an apple into its constituent parts, highlighting one second or one third, etc. Later, throughout the entire period of study, the mathematical ability to divide the whole into parts and make up a whole from its parts is gradually transformed into the philosophical category of the whole. In mathematics, the category of the whole is understood as the completeness of the solution of the problem, the completeness of the system of axioms, or the closed nature of the mathematical process. For example, when solving irrational equations, one of the most common ways is to raise both sides of the equation to the desired power. It is clear that in this case, it is possible that extra roots will be acquired. Restricting the solution to an irrational equation by the roots of the newly obtained equation generates an incompleteness of the problem posed. In this task, only part of it is completed: the original equation is replaced by a more general one - algebraic, obtained from the given by freeing from radicals. To ensure the integrity of the solution to an irrational equation, it is necessary to find out which of the roots of the algebraic equation are


image

image


the roots of the irrational equation, and which are not, i.e., go beyond the scope of definition. The standard replacement of an irrational equation with an algebraic one obtained from a given one by raising both parts to the appropriate power entails a violation of one of the basic laws of dialectics: the law of negation of negation. According to this law, the old is not simply discarded and replaced by the new, but in accordance with the principle of continuity, from the former is taken what is necessary for the development of the new. In this case, we do not just replace the irrational equation with an algebraic one, but take into account that the original equation contains radicals that impose certain restrictions on unknown quantities.

Let us explain this with a specific example: Find the largest root of the equation:


image

x2 4x 7

image

13 x

. To get an unambiguous answer to the question posed, it is


necessary to resolve a specific problem situation. To this end, we will square both sides of the


equation. As a result, we obtain a new equation

x2 4x 7 13 x


It should be noted that


the domain of the first equation is narrower than the domain of the second equation. The


domain of the first equation is the interval

(;

13] , the domain of the second is the entire

number line. The domain of the initially given equation is the interval: (;

13]. Hence,



from the roots of the quadratic equation

x2 5x 6 0


we need to select those that fall

within this interval. Solving the second equation, we find that x1

1, x2

6 .

Both numbers fall into the domain of the first equation, which means that they serve as the roots of the equation. Choosing the largest – 1. Ans.: 1.

image

x2 8x 15

image

х 5

In the practice of teaching schoolchildren to solve irrational equations, quite often there are those, the scope of which narrows down to the roots of this equation. In this regard,


consider the equation:

. Using the above technique, we will square


both sides of the equation. As a result, we obtain the algebraic equation

,


image image image

then the mixed product of vectors ( PL, PM , LM ) equals

5 20

image

72

. Hence 1

image

4


. So we get that


image image

AP AC / 4,


image image

BP AB


image

AC / 4 .

Using the properties of the mixed product of vectors, we find the volume of the tetrahedron ABLP (1/6) and the volume of the tetrahedron BMPL (1/8), and then, by connecting the parts into a single whole, we find the volume of the quadrangular pyramid LABMP.

In order to form a more conscious perception of the mixed product of vectors and develop students' ability to apply the properties of the mixed product of vectors to solving geometric problems, it is advisable to consider tasks of the following type:

On the rays

AB,

BC,

CA , containing the corresponding sides of the triangle АВС ,

points taken С1 ,

B1 ,

A1 , such that

1 AB,

CA1 BC,

AB1 CA . Find the ratio of the

area of a triangle АВС to the area of the triangle

А1В1С1 .


First of all, it should be noted that the quantities and relationships between them given in this problem are affine-invariant. At this stage of solving the problem, future mathematics teachers develop the ability to select affine-invariant objects. The presence of such objects in a problem allows it to be specialized, which can serve as the basis for finding its optimal solution. Concretization of this problem leads to a new one, which is obtained from the

previous replacement of an arbitrary triangle with an equilateral one. If the triangle

ABC


regular, then triangle

A1 B1 C1


is also regular, and it is composed of three equal triangles

A B

C ,

C B

A ,

A C

and the triangle proper

ABC. If the length of the side of


1

1

B

the triangle is regular

ABC


1

taken for 1, then, it can be shown that the area of the triangle

image

A1B1C1 , will be 7 times the area of the triangle АВС. A remarkable property of this problem is not only that it admits an optimal solution by the method of affine transformations, but also that it admits of generalization, and the generalization of this problem can be carried out in two directions: one of them is associated with the transition from one set to another more wide; containing the given set as a subset (from triangle to quadrangle, from quadrangle to


image

image


pentagon, etc.), and the other direction is associated with the transition from parallelogram to parallelepiped by analogy. The ability of the future mathematics teacher to use the generalization method to compose new problems, tasks interrelated with this one, is one of the necessary conditions indicating his readiness to organize creative activity. This problem can

be generalized to the case of quadrangles as follows: On the rays

AB,

BC,

CD, DA


containing the corresponding sides of the parallelogram ABCD , points taken

D1,

A1 , B1, C1


such that

BD1 AB,

CA1 BC,

DB1 CD,

AC1 AD . Find the ratio of


the area of a parallelogram ABCD to the area of the quadrangle

A1B1C1D1 .



image


First of all, when organizing the search for a solution to this problem, it is necessary to focus the attention of students on the possibility of determining the type of this quadrangle. Doesn't it, like this one, belong to the class of parallelograms? After simple reasoning, we can

find that the quadrilateral

A1B1C1D1

- parallelogram that consists of a parallelogram

ABCD and four triangles having the same area as this parallelogram. This means that the



area of the parallelogram

A1B1C1D1

five times the parallelogram area ABCD . This

problem can be generalized to the case of an arbitrary quadrangle ABCD : on the rays


AB,

BC,

CD, DA


image

points taken

D1,

A1 , B1, C1


so that



image

image


BD1 AB,

CA1 BC,

DB1 CD,

AC1 AD . Find the area of the resulting quadrilateral


A1B1C1D1

if the area of the given quadrangle ABCD equals S.

It is known that a tetrahedron is a spatial analogue of a triangle, and a parallelepiped is a spatial analogue of a parallelogram. Using an analogy, a number of spatial problems can be compiled that are generalizations of previous planimetric problems, for example,

      1. On the rays

        AB,

        BC,

        CD,

        DA , containing the edges of the tetrahedron


        ABCD points taken

        D1,

        A1 , B1, C1 so, that

        BD1 AB,

        CA1 BC,

        DB1 CD,

        AC1 AD . Find the ratio of the volume of a tetrahedron


        ABCD to the volume of the tetrahedron

      2. On the rays

A1B1C1D1 .


BA, B1B, C1C , CD, AA1, C1C, CD, AA1, A1 B1, D1C1, DD1 ,


containing the corresponding edges of the parallelepiped

ABCDA1B1C1D1

, points


taken


AM


BA, BN

M , N , P, Q, M1,N1, P1, Q1 such,

B1B, CP C1C, DQ CD, A1M1 AA1,

that

B1N1 A1B1, C1P1 D1C1, D1Q1 DD1

. Prove


that the volume of a polytope

MNPQM 1N1P1Q1

five times the volume of a



parallelepiped

ABCDA1B1C1D1 .

One of the ways to find the optimal solution to these problems is based on the theorem on the geometric meaning of the mixed product of three non-coplanar vectors. According to

image image image

this theorem, we find that VABCD = mod( C1B1, C1D1, C1A1 )/6. Since vectors


image image image image image image

C1B1, C1D1, C1A1

following way:

can be expanded in non-coplanar vectors

AB, AC, AD

in the


image

C1 B1


image

AC


image

,


image image image

então o produto misto de vetores ( PL, PM , LM ) é igual a

5 20

image

72

. Por isso 1

image

4


. Então, nós entendemos


image image

AP AC / 4,


image image

BP AB


image

AC / 4 .

Usando as propriedades do produto misto de vetores, encontramos o volume do tetraedro ABLP (1/6) e o volume do tetraedro BMPL (1/8), e então, conectando as partes em um único todo, encontramos o volume da pirâmide quadrangular LABMP.

A fim de formar uma percepção mais consciente do produto misto de vetores e desenvolver a capacidade dos alunos de aplicar as propriedades do produto misto de vetores para resolver problemas geométricos, é aconselhável considerar tarefas do seguinte tipo:

Nos raios

AB,

BC,

CA , contendo os lados correspondentes do triângulo АВС ,

pontos tomados С1 ,

B1 ,

A1 , de tal modo que

1 AB,

CA1 BC,

AB1 CA . Encontre

a proporção da área de um triângulo АВС para a área do triângulo

А1В1С1 .


Em primeiro lugar, deve-se notar que as quantidades e relações entre elas dadas neste problema são invariantes por afinidade. Nesta fase de resolução do problema, os futuros professores de matemática desenvolvem a capacidade de selecionar objetos invariantes afins. A presença de tais objetos em um problema permite que ele seja especializado, o que pode servir de base para encontrar sua solução ótima. A concretização desse problema leva a um novo, que é obtido a partir da substituição prévia de um triângulo arbitrário por um equilátero.

Se o triângulo

A B C

é regular, então o triângulo

A1 B1 C1

também é regular e é composto


por três triângulos iguais

A B

C ,

C B

A ,

A C

e o triângulo propriamente dito

image

1

1

B

1

ABC. Se o comprimento do lado do triângulo for regular

ABC


tomado como 1, então,


image

image



pode-se mostrar que a área do triângulo

A1 B1 C1 , será 7 vezes a área do triângulo АВС. Uma

propriedade notável deste problema não é apenas que ele admite uma solução ótima pelo método das transformações afins, mas também que admite generalização, e a generalização deste problema pode ser realizada em duas direções: uma delas está associada a transição de um conjunto para outro mais amplo; contendo o conjunto dado como um subconjunto (do triângulo ao quadrilátero, do quadrilátero ao pentágono etc.), e a outra direção está associada com a transição do paralelogramo para o paralelepípedo por analogia. A capacidade do futuro professor de matemática de utilizar o método da generalização para compor novos problemas, tarefas inter-relacionadas com esta, é uma das condições necessárias para indicar a sua disponibilidade para organizar a atividade criativa. Este problema pode ser generalizado para

o caso de quadrângulos da seguinte forma: Nos raios

AB,

BC,

CD,

DA contendo os


lados correspondentes do paralelogramo ABCD , tomados os pontos

D1,

A1 , B1, C1


de tal modo que

BD1 AB,

CA1 BC,

DB1 CD,

AC1 AD . Encontre a proporção da área


de um paralelogramo ABCD para a área do quadrilátero

A1B1C1D1 .



image


Em primeiro lugar, ao se organizar a busca de uma solução para este problema, é necessário chamar a atenção dos alunos para a possibilidade de determinar o tipo desse quadrilátero. Não pertence, como este, à classe dos paralelogramos? Após um raciocínio

image

simples, podemos descobrir que o quadrilátero

A1B1C1D1


image image image image image image

então produto misto ( C1B1, C1D1, C1A1 ) dos vetores

C1B1, C1D1,

C1A1

será


image image image

expresso através do produto misto de vetores AB,

AC, AD

da seguinte forma:


image image image image image image

( C1B1 , C1D1 , C1A1 ) = –15 ( AB, AC, AD ).

Isso significa que o volume do tetraedro A1B1C1D1 é 15 vezes o volume deste tetraedro.

A fim de provar que a relação do volume do paralelepípedo

ABCDA1B1C1D1 ao


volume do paralelepípedo

MNPQM 1N1P1Q1

seja igual a 1:5, é necessário conhecer a


image image image

decomposição de vetores

image image image

MQ, MN, MM1

por vetores não coplanares AD, AB, AA1 .



image


A partir da condição do problema, levando em consideração as regras de adição de


image image image

vetores, obtemos que os vetores

MQ, MN, MM1

relacionado a vetores

AD, AB, AA1

pelas



image image

seguintes proporções: MQ AD,


image image image

MN 2 AB AA1,


image image image

MM1 AB 2 AA1 . Portanto, levando

image

em consideração as propriedades do produto misto de vetores, temos


image

image


image image image image image image

(MQ, MN, MM1) 5(AB, AD, AA1). . Isso significa que o volume do paralelepípedo MNPQM1N1P1Q1 é cinco vezes o volume de um paralelepípedo ABCDA1B1C1D1.

Ao buscar uma solução ótima para um problema geométrico, é importante que os

futuros mestres da educação matemática tenham desenvolvido a capacidade de representar um meio-plano, o interior de um polígono, o interior de um círculo e outras figuras geométricas com modelos algébricos apropriados. Na formação desta habilidade entre os alunos, problemas do seguinte tipo podem ser jogados: Dentro de um triângulo equilátero, um ponto arbitrário é tomado, a partir do qual perpendiculares são baixados para todos os seus lados. Prove que a soma dos comprimentos dessas perpendiculares é igual ao comprimento da altura do triângulo. A procura de uma solução para este problema deve começar por centrar a atenção dos formandos na utilização de modelos algébricos das imagens geométricas correspondentes. No momento em que este problema for estudado, os futuros mestres em educação pedagógica (perfil "Educação matemática") deverão ter a capacidade de vincular essas figuras geométricas de forma canônica. A escolha de um sistema de coordenadas canônico contribui para uma redução significativa na atividade computacional. Neste caso, a escolha canônica do sistema de coordenadas se deve ao fato de que o centro de qualquer um dos lados do triângulo pode ser tomado como origem do sistema de coordenadas, por exemplo, tomamos o meio O do lado AB. Como o primeiro vetor coordenado, tomamos o

image

vetor unitário codirecional com o vetor ОВ , e como o segundo vetor coordenado, tomamos o


image

image

vetor unitário codirecional com o vetor ОС . Sem perda de generalidade, podemos assumir que o comprimento do lado de um triângulo equilátero é 2. Então, em relação a um PDSK especialmente selecionado, os pontos A, B, C terão as seguintes

coordenadas: А(1; 0),

B(0;

3),

C(1; 0) . Com M (x, y) sendo o ponto interior do


triângulo. Usando as coordenadas dos pontos A, B, C, você pode desenhar as equações das linhas contendo os lados deste triângulo. Então, o interior do triângulo ABC será determinado pelo sistema de desigualdades:

у 0,

image

3х у

image

3х у


0,

image

3

image

3

0.


Usando a fórmula para calcular a distância de um ponto a uma linha, você pode mostrar que


image

image

(М , АС )

у , (М , ВС)

, (М , АВ)

image

image

3х у 3

image

3x у 3

2 2


image

image


Levando em consideração as desigualdades acima, que são satisfeitas pelas coordenadas do ponto M, obtemos que

(М , АС)

у, (М , ВС)

3х у

image

2

3 , (М , АВ)

image

3х у 3

image

3

2

De onde

(М , АС)

(М , ВС)

(М , АВ)

. Como o comprimento da


altura do triângulo é igual ao mesmo, significa que o requisito do problema foi atendido. No decurso da resolução de tais problemas, os futuros professores de matemática dominam não apenas os métodos de estabelecer uma correspondência um-a-um entre as figuras geométricas e seus modelos algébricos, mas, em primeiro lugar, dominam os métodos de sua aplicação na busca pelo ótimo solução de um problema geométrico específico de um tipo de escola.

A eficácia do impacto do ambiente educacional na saúde dos alunos do ensino fundamental é determinada pelas atividades sistemáticas de saúde. O processo de formação de uma atitude consciente para com a própria saúde requer a combinação de componentes de informação e motivação com as atividades práticas dos alunos, o que os ajudará a adquirir as habilidades e hábitos necessários para a preservação da saúde. (ROZLUTSKA et al., 2020)


Conclusão


Assim, o aspecto metodológico da tarefa material apresentada neste artigo, destinada a preparar futuros mestres da educação pedagógica (perfil “Educação Matemática”) para a atividade criativa, permite-nos destacar a objetividade da atividade educativa como mecanismo básico que garante a eficácia da formação de competência, iniciativa e criatividade. Todos esses mecanismos atuam em unidade e têm um impacto positivo no desenvolvimento da atividade criativa no processo educativo. Foi revelado que no processo de aprendizagem da resolução de problemas geométricos incluídos no sistema desenvolvido, os alunos demonstram indicadores mais elevados do nível de formação da atividade criativa.


REFERÊNCIAS


ANDREEV, V. I. Dialectics of education and self-education of a creative personality: Fundamentals of creativity pedagogy. Kazan: Publishing house of Kazan University, 1988.


image

DAVYDOV, V. V. The concept of humanization of Russian primary education (the need and possibility of creating an integral system of developing primary education). Psychological Science and Education, v. 5, n. 2, 2000.



image

image


DOROFEEV, S. N. et al. Formation of research competencies of students in a modern mathematics lesson. Modern High Technologies, n. 10, p. 181-185, 2018.


DOROFEEV, S. N. Theory and practice of forming the creative activity of future teachers of mathematics in a pedagogical university. 2000. Dissertation (Doctorate) – Moscow Pedagogical State University, Moscow, 2000.


GLAZKOV, Y. A.; EGUPOVA, M. V. Geometry assignments for the formation of universal educational activities in basic school. Mathematics at school, n. 2, p. 24-31, 2017.


KALINKINA, T. M. Dynamic tasks as a means of improving the process of teaching geometry in high school. Saransk: Publishing house of the Mordovian State Pedagogical Institute. 1995.


KALMYKOVA, Z. I. Understanding of educational material by schoolchildren. Bulletin of Practical Psychology of Education, n. 1, p. 21-25, 2013.


LERNER, I. Features of teaching children with disabilities in mathematics lessons EU Lisitsa, Deputy Director for SD, MBOU "School number 66". BBK 74.262. 21 M34, 24. 2016.


LODATKO, E. A. Philosophy of teaching mathematics as a semantic component of the modern educational space. TSU Science Vector: Series: Pedagogy, Psychology, n. 1, p. 107-111, 2015.


MENCHINSKAYA, N. A. Problems of education, upbringing and mental development of the child. Moscow: Psychol.-social. IN-T, 2004.


MUDRIK, A. V. Human socialization. 2004.


PODLASY, I. P. Pedagogy: 100 questions-100 answers: textbook. Manual for stud. Higher. Study Institutions. Moscow: Vlados-Press Publishing House, 2001. 368 p.


ROZLUTSKA, G. M. et al. Educational traditions of healthy lifestyle of pupils of public schools of transcarpathia (1919–1939). Medical Education, n. 2, p. 127-132, 2020. DOI:

10.11603 / me.2414-5998.2020.2.11162


SAMYGIN, S. I.; STOLYARENKO, L. D. Psychology and pedagogy. 2012.


TEMERBEKOVA, A. A. et al. Theoretical foundations of personality development in the context of interactive learning technologies. 2013.


UTEEVA, R. A. Substantive and methodological features of training masters of mathematics education in Russia. Science and Education a New Dimension, t. 3, v. 45, n. 22, p. 14-17, 2015.


image

UTEEVA, R. A.; ORAZYMBETOVA, G. S. Actual problems of the implementation of the stochastic content line in the school mathematics course. Letters to the Issue. Offline: Electronic Scientific Journal, n. 11, p. 1908-1908, 2012.



image

image


VAGANOVA, O. I. et al. Personally-oriented professional education. Baltic Humanitarian Journal, v. 9, n. 2, p. 112-115, 2020.


VYGOTSKY, L. S. Pedagogical psychology. 2007.


WINTER, I. A. Education strategy: opportunities and reality. Knowledge. Understanding.

Skill, n. 1, 2006.


Como referenciar este artigo


DOROFEEV, S. N.; SHICHIYAKH, R. A.; KHASIMOVA, L. N. Desenvolvimento de

image

habilidades de atividade criativa de estudantes em estabelecimentos de ensino superior. Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. esp. 2, p. 887-904, maio 2021. e-ISSN:1519-9029. DOI: https://doi.org/10.22633/rpge.v25iesp.2.15274


Submetido em: 20/01/2021

image

Revisões requeridas em: 18/03/2021 Aprovado em: 25/04/2021 Publicado em: 01/05/2021


image

image