ARQUITECTURA DE DATOS EN PLATAFORMAS EDUCATIVAS DIGITALES Y DATOS - COMPETENCIA DE LOS PROFESORES
DATA ARCHITECTURE ON DIGITAL EDUCATIONAL PLATFORMS AND DATA- COMPETENCE OF TEACHERS
Olga A. FIOFANOVA1
RESUMEN: El trabajo tiene como objetivo identificar la arquitectura de datos y estructurar los tipos de datos educativos analizados en diversas plataformas educativas digitales. El artículo presenta materiales de investigación por el método de análisis genético de acciones laborales y tareas profesionales de un docente, necesarios para una organización competente del desarrollo basada en datos. El estudio 1 estudió 25 plataformas educativas digitales para educación general de diferentes países, incluidas 9 rusas (públicas, privadas y corporativas). El estudio 2 incluyó el método de análisis genético de las acciones laborales y tareas profesionales de los docentes para organizar el desarrollo de los niños a partir del análisis de datos educativos. Los resultados obtenidos permiten decir que en el entorno educativo digital se amplía el abanico de tareas profesionales y las acciones laborales del docente se transforman en la implementación de actividades de desarrollo (como función laboral) a partir del análisis de datos educativos.
PALABRAS CLAVE: Arquitectura de datos. Análisis de datos educativos. Competencia de datos de un maestro. Educación para el desarrollo. Amplificación del desarrollo.
ABSTRACT: The work is aimed at identifying the data architecture and structuring the types of educational data analyzed on various digital educational platforms. The article presents research materials by the method of genetic analysis of labor actions and professional tasks of a teacher, necessary for a competent organization of development based on data. Study 1 studied 25 digital educational platforms for general education from different countries, including 9 Russian (public, private, and corporate). Study 2 included the method of genetic analysis of labor actions and professional tasks of teachers for organizing the development of children based on the analysis of educational data. The results obtained make it possible to say that in the digital educational environment the range of professional tasks is expanding, and the labor actions of the teacher are transformed in the implementation of developmental activities (as a labor function) based on the analysis of educational data.
KEYWORDS: Data architecture. Analysis of educational data. Data-competence of a teacher. Developmental education. Amplification of development
Este trabalho aborda a dimensão da educação da qual depende seu potencial de desenvolvimento - a organização do desenvolvimento dos estudantes a partir da análise de dados educacionais. De acordo com os resultados do estudo, são caracterizados e classificados os tipos de dados educacionais, cuja análise está à disposição dos professores em plataformas educacionais e serviços digitais e é possível resolver os problemas de organização do desenvolvimento dos escolares. A este respeito, tais oportunidades de análise de dados educacionais para a organização do desenvolvimento requerem a competência de análise de dados entre os professores na prática. Nesse sentido, há a necessidade de um repensar conceitual da ciência de dados em um aspecto setorial - no campo da educação. A Pedagogia Data Driven como um conceito de teoria pedagógica e o fenômeno da prática pedagógica tem uma história de desenvolvimento não superior a 10 anos (FIOFANOVA, 2020a). Esse conceito permite aprofundar a teoria da educação desenvolvimentista em uma nova perspectiva (VYGOTSKY, 2004; DAVYDOV, 1996; MARGOLIS, 2020) e a prática da educação reflexiva baseada na consciência dos resultados educacionais e na análise dos dados educacionais (BETELIN et al., 2020; KENNEDY; PETERS; THOMAS, 2012; FIOFANOVA, 2020b; ICEDM, 2021).
É necessário recorrer à psicologia e à lógica no estudo dos processos de desenvolvimento nas condições educacionais. A psicologia do desenvolvimento é divulgada
na teoria da educação do desenvolvimento (VYGOTSKY, 2004; DAVYDOV, 1996; MARGOLIS, 2020) por meio dos métodos de atividade de educação, características de idade da atividade principal da criança, a zona de desenvolvimento proximal da criança. A lógica (lógica conteúdo-genética) no estudo do desenvolvimento da atividade revela o significado da reflexão da atividade e os métodos de sua implementação, a situação de ruptura dos meios de atividade (SHCHEDROVITSKY, 1993). "Os métodos pedagógicos podem ser condicionalmente decompostos em lógico-pedagógico" e "psicológico-pedagógico" (SHCHEDROVITSKY et al., 1993; DECREE OF THE PRESIDENT OF THE RUSSIAN
FEDERATION N. 642, 2016), a serem solicitados aos alunos, - hoje em todos os locais apenas “funcionais” e eficazes não são psicológicos ou sociológicos e não disciplinares especiais (matemáticos, físicos, químicos etc.), mas apenas meios e métodos lógicos (Pedagogia e Lógica) (SHCHEDROVITSKY et al., 1993; FIOFANOVA et al., 2020a).
No contexto do desenvolvimento de plataformas e serviços educacionais digitais para a análise de dados educacionais, os professores tiveram acesso a dados educacionais sistematizados (dados sobre os resultados dos programas educacionais de masterização, dados sobre a escolha pessoal de perfis, disciplinas, níveis de dificuldade, formas de resolução de problemas etc.), que se tornou a base para a aplicação da lógica de desenho de programas educacionais a partir do resultado, o desenho de atividades educacionais com base nos resultados da avaliação do valor adicionado (MARGOLIS, 2020), bem como a base para a reflexão das atividades pedagógicas e dos resultados pedagógicos organizados com os alunos. Ou seja, além dos meios psicológicos e do conhecimento sobre os padrões psicológicos de desenvolvimento nas condições educacionais, a análise lógica de dados na educação passou a ser utilizada na atividade pedagógica. No contexto da interdisciplinaridade do desenvolvimento do conhecimento científico, os métodos da data science integram-se à pedagogia, a partir da qual se desenvolve a metodologia e a tecnologia de análise de dados educacionais. A partir da análise dos dados educacionais, o professor realiza a produção de meios de educação desenvolvimentista, a formação (FIOFANOVA, 2020b).
A análise de dados como ferramenta lógica de organização de atividades, produção, comunidades humanas passou a ser intensamente utilizada em diversos campos: nas indústrias da informação (ANDERSON, 2017), nos negócios (INMON; LINSTEDT; LEVINS; 2019; DHANRAJANI, 2018), em RH/gestão de talentos (NOCKER; VANIA, 2019; SULLIVAN,
2012), bem como no campo da educação (BETELIN et al., 2020; KENNEDY; PETERS; THOMAS, 2012; FIOFANOVA, 2020b). Em um contexto interdisciplinar, a análise de dados se torna o assunto de discussão em várias conferências internacionais (EDM, 2021; ICEDM
RPGE– Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. esp. 3, p. 1700-1716, set. 2021. e-ISSN: 1519-9029
2021, p. 15). Conferência Internacional sobre Mineração de Dados Educacionais, 2021; Conferência Internacional sobre Mineração de Dados Educacionais (ICEDM, 2021). Grande volume de dados está incluído no grupo de tecnologias prioritárias da Iniciativa Nacional de Tecnologia, a Estratégia de Desenvolvimento Científico e Tecnológico da Rússia (End-to-end technologies of NTI, s/d; DECREE OF THE PRESIDENT OF THE RUSSIAN FEDERATION NO. 642, 2016).
No campo da educação no contexto da transformação digital, o desenvolvimento de mecanismos institucionais de avaliação da qualidade da educação, a criação de condições para a escolha de percursos educacionais individuais no ambiente educacional digital, o acúmulo de conjuntos de dados, faz-se necessário investigar:
como a lógica da atividade pedagógica muda durante a implementação de programas educacionais baseados na análise de dados educacionais;
quais os tipos de dados educacionais que podem embasar as ações pedagógicas para a organização da educação para o desenvolvimento;
que competências são necessárias para um professor analisar os dados educacionais na implementação da educação para o desenvolvimento;
Como esse tipo de competência pode ser incluído nos padrões educacionais e profissionais?
Objetivos da pesquisa: 1) estudar a arquitetura dos dados analisados em plataformas educacionais digitais e plataformas de avaliação da qualidade da educação para garantir o desenvolvimento de uma pessoa (alunos), 2) estudar quais competências em análise de dados são necessárias para um professor para organizar o desenvolvimento dos alunos.
Os métodos de pesquisa incluíram o seguinte. O método de análise estrutural e funcional de plataformas educacionais digitais de educação geral permitiu identificar a arquitetura dos dados analisados, os tipos de dados com os quais os professores trabalham.
O método de entrevista docente e o método de análise genética das ações laborais e das atribuições profissionais de um professor permitiram identificar mudanças na lógica das ações laborais dos docentes, uma alteração (ampliação) do leque de atribuições profissionais da atividade pedagógica nos um ambiente educacional digital, e também possibilitou sistematizar e designar as competências necessárias para uma organização competente da educação para o desenvolvimento a partir dos dados analisados.
Usando o primeiro grupo de métodos, foram estudadas 25 plataformas educacionais digitais de educação geral de diferentes países, incluindo 9 russas (públicas, privadas e corporativas).
Usando o segundo grupo de métodos, 1250 professores de educação geral foram entrevistados. Por meio do método de entrevistas estruturadas, estudamos a problemática da mudança das ações laborais e das atribuições profissionais dos professores para a organização do desenvolvimento infantil a partir da análise de dados educacionais.
Os resultados obtidos permitem dizer que no ambiente educacional digital o leque de atribuições profissionais está se ampliando, e as ações laborais do professor se transformam na implementação de atividades de desenvolvimento (como função laboral) a partir da análise dos dados educacionais de crianças.
As perguntas estruturadas da entrevista incluem:
Para resolver que tarefas profissionais e em que situações pedagógicas se recorreu às plataformas digitais e aos serviços de análise de dados?
Com base em quais dados educacionais dos alunos você tomou decisões pedagógicas? Que tipo de decisões pedagógicas eram (sobre ajustar programas educacionais, métodos de ensino, expandir as possibilidades de escolha de trajetórias educacionais, organizar uma situação de desenvolvimento, o que mais – pode nos dizer?)
Qual a sequência de suas ações ao trabalhar com dados educacionais para organizar a prática do desenvolvimento infantil na educação?
A análise, o processamento estatístico e a interpretação dos dados da entrevista estruturada revelaram o seguinte.
A gama de tarefas profissionais dos professores está se expandindo, na estrutura das tarefas profissionais o analítico se torna formador do sistema - a tarefa de analisar dados educacionais para uma escolha razoável de meios pedagógicos de organizar o desenvolvimento, a atividade de desenvolvimento de uma criança.
Na maioria das vezes, os professores recorrem a plataformas educacionais digitais de formato regional, que são selecionadas pelos participantes nas relações educacionais para a implementação de programas educacionais (por exemplo: e-escola Moscou, Perm e-escola, Ugra e-escola, Ural e-escola, e-escola da região de Moscou - o portal escolar da região de Moscou), e também para plataformas educacionais digitais de escala federal, por exemplo: a
escola eletrônica russa, a plataforma eletrônica para educação personalizada "Sberklass", a eletrônica plataforma "Foxword". Além disso, os professores usam serviços de análise de dados digitais usando plataformas eletrônicas de centros regionais para avaliar a qualidade da educação (dados de diagnóstico da disciplina, dados de avaliação independente da qualidade), eles também usam portais digitais para a certificação final dos alunos na forma de análise de dados para o Exame Estadual Unificado, OGE. Eles usam menos frequentemente a análise de dados disponíveis nas plataformas eletrônicas das Olimpíadas (Olimpíada da Rússia para estudantes, Olimpíada do NTI, Olimpíada de Megalópoles, as plataformas das Olimpíadas universitárias especializadas: Torre Dourada, Amostra Mais Alta, Conquista dos Montes Sparrow, Olimpíada de Engenharia MAMI, Kurchatovskaya Olympiad etc.).
Assim, os professores podem formular julgamentos sobre os tipos de dados educacionais usados na análise pedagógica apenas com base em plataformas educacionais digitais e serviços de análise de dados digitais com os quais estão familiarizados. Afinal, recorrer a um determinado mínimo de serviços digitais para analisar dados educacionais para a implementação de atividades de desenvolvimento não é regulamentado por padrões profissionais, responsabilidades de trabalho, padrões do ambiente educacional digital, e esse tipo de análise ainda não se tornou uma cultura interna regular da comunidade profissional.
Assim, pode-se notar: se os padrões educacionais federais de educação geral fixam os requisitos para os resultados dos programas educacionais de masterização, então os requisitos para a análise desses resultados, métodos de análise de dados educacionais refletindo o "desempenho - não o aproveitamento" de resultados educacionais não são de forma alguma regulamentados ou indicados para os professores como possíveis fundamentos da atividade pedagógica e ferramentas pedagógicas para analisar o desenvolvimento.
Ao estudar as ações laborais transformadoras de professores em ambientes educacionais digitais, foram analisadas as respostas dos professores ao questionamento de uma entrevista estruturada: “Qual a sequência de suas ações no trabalho com dados educacionais para a organização da prática do desenvolvimento infantil na educação?". A análise e o tratamento dos dados das respostas generalizadas dos professores permitiram identificar uma sequência a partir da seguinte lógica de ações: a) busca de fontes de dados em plataforma educacional digital ou em outros serviços digitais; b) análise de dados utilizando métodos de análise disponíveis (métodos pessoais de análise mental “manual” ou análise tecnológica de dados utilizando serviços disponíveis em plataformas digitais); c) fundamentação com base na análise de dados de determinados métodos de ação pedagógica para organizar o desenvolvimento das crianças nas condições do processo educativo.
A gênese de “novas” ações laborais na atividade laboral do professor está associada às inovações tecnológicas na forma de serviços de recolha e armazenamento de dados educacionais, bem como às condições de realização de atividades educativas por meio de plataformas educacionais digitais.
A análise estrutural e funcional das ações laborais na análise dos dados educativos permitiu identificar a sua estrutura e funções, bem como designar (nomear) estas "novas" ações laborais:
engenharia e design (uso de plataformas digitais e serviços de análise de dados digitais);
analítico e metodológico (aplicação de métodos de análise de dados);
organizacional e prático (organização da prática de desenvolvimento) (Tabela 1).
A estrutura das tarefas profissionais para a análise de dados educacionais | As funções das ações laborais para a implementação da formação, educação, desenvolvimento com base na análise de dados educacionais |
engenharia e estrutural | usando plataformas digitais e serviços de análise de dados digitais como fontes de dados sobre o desenvolvimento infantil |
analítico e metodológico | aplicação de métodos de análise de dados educacionais |
organizacional e prático | organização das práticas de desenvolvimento por meio de ferramentas educacionais com base nos dados educacionais analisados |
Fonte: Elaborado pelos autores
Nesse sentido, as ações laborais acima exigem que os professores implementem competências profissionais: competência digital (competência na escolha e utilização de um serviço de análise digital de dados entre os disponíveis na infraestrutura tecnológica digital da educação), competência em dados (competência na escolha e aplicação de métodos de análise de dados educacionais), organização de competências de desenvolvimento por meios educacionais (desenvolvimento de evidências/educação baseada em evidências) (Tabela 2).
A estrutura das tarefas profissionais para a análise de dados educacionais | Competência profissional para a implementação de tarefas profissionais |
engenharia e estrutural | competências digitais (a competência de escolher e usar um serviço de análise digital de dados entre os disponíveis na infraestrutura tecnológica digital da educação) |
analítico e metodológico | competência em dados (competência na seleção e aplicação de métodos de análise de dados educacionais) |
organizacional e prático | desenvolvimento de evidências - competência (competência da organização de desenvolvimento por meios educacionais com base na análise de dados) |
Source: Prepared by the authors
No modelo europeu de competências digitais DigCompEdu (Fig. 1), a competência de análise de dados é considerada congruente com a função pedagógica - o empoderamento dos alunos (CARRETERO GOMEZ; VUORIKARI; PUNIE, 2017).
Fonte: Carretero Gomez, Vuorikari and Punie (2017). Tradução nossa.
O Quadro Europeu de Qualificações e o Quadro Nacional de Qualificações para a Educação na Rússia são um pouco diferentes. A competência de análise de dados no modelo europeu de competência em educação é considerada na estrutura da competência digital do professor e separadamente da competência da disciplina, mas com uma função comum relacionada - o empoderamento dos alunos. Na prática educacional russa, no contexto dos
princípios institucionalizados da educação desenvolvimentista e da estrutura tradicional das funções pedagógicas do trabalho na educação: as atividades de ensino, educação, desenvolvimento, "análise de dados educacionais" como uma tarefa profissional está incluída na implementação dessas três funções de trabalho de um professor. E podem ser implementadas, junto com as competências digitais do professor, tanto a competência de análise de dados educacionais, quanto na estrutura de competência disciplinar - quando o conteúdo da educação em uma disciplina é desenhado com base em dados sobre o desenvolvimento de várias indústrias no contexto da disciplina acadêmica (mas tal abordagem para construir o conteúdo da educação só é possível no modelo de educação orientada para projetos).
As tendências de amplificação (complicação, enriquecimento) das formas de atividade com novos meios técnicos há muito são objeto de atenção de todo o ciclo das ciências da atividade laboral (ZINCHENKO; MORGUNOV, 1994). Na psicologia do desenvolvimento, os mecanismos de amplificação são divulgados nos trabalhos de V.P. Zinchenko.
No contexto da transformação digital da educação, o surgimento de novos meios tecnológicos de organização da educação desenvolvimentista, questiona-se sobre a necessidade de melhorar o padrão profissional do professor como resposta aos desafios das mudanças tecnológicas na educação e nas áreas associadas ao aprofundamento da mão de obra, a demanda por novas competências profissionais do professor na educação desenvolvimentista.
Como os educadores usam a análise de dados educacionais na organização da educação e do desenvolvimento infantil? Uma representação disso pode ser encontrada no estudo de relatórios públicos de organizações educacionais, relatórios de autoavaliação de organizações educacionais, bem como nos relatórios analíticos de professores sobre a implementação de programas educacionais.
Em nosso estudo, a entrevista estruturada incluiu a seguinte questão:
Com base em quais dados educacionais dos alunos você tomou decisões pedagógicas? Que tipo de decisões pedagógicas foram elas (sobre ajustar programas educacionais, métodos de ensino, ampliar as possibilidades de escolha de trajetórias educacionais, organizar uma situação de desenvolvimento, o que mais? - conte-me).
Com base nos resultados das respostas dos professores às perguntas das entrevistas, revelou-se a seguinte característica do trabalho com dados: se os dados sobre os resultados educacionais são baixos, os professores tentam compensar as deficiências com recursos externos, como planejamento de cursos de formação avançada, busca de simuladores de
RPGE– Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. esp. 3, p. 1700-1716, set. 2021. e-ISSN: 1519-9029
treinamento digital adicionais, transferindo a tarefa problemática para o serviço psicológico escolar, e se baseiam menos ainda nos resultados da análise de dados educacionais, prevê-se mudar as formas de organização das atividades educacionais, adequando os programas educacionais, organizando as atividades de participantes nas relações educacionais.
Os educadores caracterizam os tipos de dados educacionais analisados, dependendo das plataformas educacionais digitais e dos serviços de dados digitais com os quais trabalham. Mas o fato é que diferentes plataformas educacionais digitais têm arquiteturas de dados distintas e implicam em capacidades analíticas distintas.
Considere três tipos de dados educacionais com os quais os educadores lidam.
Dados sobre resultados educacionais. São dados sobre os resultados do desenvolvimento dos programas educacionais, dados sobre diagnósticos de disciplinas sistematizados em plataformas digitais de centros regionais de avaliação da qualidade do ensino, dados sobre certificações intermediárias e atuais em disciplinas, dados sobre solução de problemas educacionais com respostas conhecidas (respostas corretas), sistematizados em plataformas educacionais digitais. Este tipo de dado é representado na arquitetura de dados de todas as plataformas educacionais digitais e plataformas de avaliação da qualidade da educação. Este tipo de dado educacional de estudantes é considerado pelas comissões de certificação como o resultado de atividades pedagógicas na certificação de professores. Este tipo de dado educacional é um elemento importante do sistema tradicional de educação em sala de aula. Mas este tipo de dado não reflete de forma alguma a capacidade de escolher o conteúdo educacional, o método de resolver o problema educacional, o nível de dificuldade do problema, o tema da pesquisa educacional, etc.
Os dados sobre as escolhas individuais das crianças são um elemento importante da Pedagogia da Autodeterminação como modelo moderno de educação. A Lei de Educação na Rússia (Artigo 34, Cláusula 3) regula a escolha e implementação de um currículo individual. Mas o direito de tal implementação depende da arquitetura tecnológica da plataforma educacional digital. A e-escola russa oferece uma escolha por idades e disciplinas acadêmicas, a e-escola de Moscou, além do acima, oferece uma oportunidade de escolher de acordo com interesses cognitivos e tópicos sobre disciplinas por meio do serviço "smart city school", o A plataforma educacional digital Foxword - em tarefas de desenvolvimento funcional, Sberklass
- oferece uma escolha nas tarefas de desenvolvimento personalizado de "habilidades futuras" por meio do serviço digital "Navegador das habilidades do século XXI."
Por que é pedagogicamente importante projetar atividades com escolhas e dados sobre escolhas individuais? Esses dados são fundamentais para a análise do desenvolvimento
humano e da educação na metodologia da teoria histórico-cultural, psicologia e pedagogia do desenvolvimento, pedagogia da atividade, pedagogia da autodeterminação.
Tal pedagogia de plataformas educacionais digitais visa desenvolver na geração seguinte sua própria norma cultural de gestão de sua própria educação.
Com relação à arquitetura de dados, duas abordagens fundamentalmente diferentes devem ser observadas. A educação da era industrial é um material educacional substantivamente organizado, controle e análise de dados sobre o volume adquirido de conhecimentos e habilidades reprodutivas. A educação da era pós-industrial é um conteúdo de educação convergentemente organizado em conteúdos educacionais, controle e análise de dados sobre o desenvolvimento das atividades produtivas, escolhas pessoais na resolução de problemas de projeto.
Portanto, se antes os portadores dos conteúdos da educação eram regulamentados na forma de livros didáticos incluídos por portaria do Ministério na lista federal de livros didáticos, agora é exigida a Norma do ambiente educacional digital (It is necessary to develop a standard for the digital educational environment, 2021).
Atualmente, em diferentes plataformas educacionais digitais, existem diferentes oportunidades para os alunos escolherem serviços de desenvolvimento, conteúdos educacionais, métodos de domínio de materiais educacionais, o que, de fato, cria de forma latente uma situação de desigualdade educacional.
Outro tipo de dado, relativamente novo para a pedagogia e a educação, mas importante na estrutura pós-industrial da educação, são os dados sobre as tarefas do projeto resolvidas pelos alunos. A atividade, cujo resultado são este tipo de dados, é regulamentada pelas normas estaduais federais de educação geral - “atividade de projeto dos alunos”. O objetivo da atividade é desenvolver na próxima geração a capacidade de resolver problemas não resolvidos, projetar o futuro, modelar seu futuro em relação a profissões promissoras.
Em quais plataformas educacionais digitais um educador pode trabalhar com esse tipo de dados? Basicamente, são plataformas de educação corporativa criadas por empresas públicas. Por exemplo, a plataforma educacional digital da Liga Escolar Rusnano - Nanogrado Digital, a plataforma educacional digital e olímpica do movimento circular NTI - Olimpíada NTI, onde as crianças podem não apenas escolher ou definir de forma independente uma tarefa de projeto, mas também montar uma equipe de projeto por conta deles. Em quais plataformas educacionais digitais um educador pode trabalhar com esse tipo de dados? Basicamente, são plataformas de educação corporativa criadas por empresas públicas. Por exemplo, a plataforma educacional digital da Liga Escolar Rusnano -
RPGE– Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. esp. 3, p. 1700-1716, set. 2021. e-ISSN: 1519-9029
Nanogrado Digital, a plataforma educacional digital e olímpica do movimento circular NTI - Olimpíada NTI, onde as crianças podem não apenas escolher ou definir de forma independente uma tarefa de projeto, mas também montar uma equipe de projeto por conta deles.
Assim, podemos concluir que existe uma grande diferença na arquitetura de dados nas plataformas educacionais digitais. A capacidade e habilidade dos professores para trabalhar com diferentes tipos de dados educacionais dependem da infraestrutura tecnológica da educação, dos recursos de design da arquitetura de dados em diferentes plataformas educacionais digitais.
Esse problema não diz respeito apenas às plataformas educacionais digitais russas, mas também é típico de outros países.
Utilizando o método de análise estrutural e funcional, foram estudadas as plataformas educacionais digitais de educação geral em diferentes países, tanto as já mencionadas plataformas educacionais digitais russas como de outros países. Por exemplo:
Kundelik (https://portal.kundelik.kz/ru/) (Cazaquistão)
Nazarbayev Intellectual Schools (https://www.nis.edu.kz/) (Cazaquistão),
SCHOOLS.BY (https://schools.by/) (Bielo-Rússia)
Pidruchnik (https://www.pidruchnyk.ua)
Shho Dennik (http://shodennik.ua//) (Ucrânia)
EKOOL (https://ekool.eu/index_en.htm), (Estônia),
ESIS (http://www.esis.de/) (Alemanha),
EdLounge (https://www.edlounge.com/) (Reino Unido)
Tietlo Education Learning https://www.tieto.com/en/who-we-serve/public- sector/education/tieto-education-learning/ (Finlândia),
17zuoye https://ucenter.17zuoye.com/ (China).
A arquitetura de dados nessas plataformas educacionais digitais é projetada de maneiras diferentes e depende de ideais educacionais nacionais, padrões educacionais, tarefas de envolvimento de alunos em projetos de desenvolvimento socioeconômico de países europeus em arquitetura de dados - dados sobre competências futuras. O design da arquitetura de dados e a escolha dos dados coletados para análise depende da legislação e dos regulamentos legais para trabalhar com dados pessoais nos países, as formas institucionais de funcionamento das plataformas digitais e dos serviços de análise de dados dependem do sistema de gestão educacional construído nos países. Formas personalizadas de
armazenamento de dados educacionais - portfólio digital pessoal, dados educacionais na conta pessoal do aluno, conversíveis na transição para o próximo nível de ensino, certificados digitais de realizações educacionais etc. - dependem dos regulamentos legais para trabalhar com dados educacionais nos países do mundo, os mecanismos projetados para a implementação do conceito de aprendizagem ao longo da vida, os mecanismos projetados para a integração da educação formal e não formal, os mecanismos de comunicação entre a educação e o mercado de trabalho (carteira digital de competências) implementados nos países.
Também, nos países do mundo, estão sendo resolvidas as tarefas de desenvolver as competências dos professores na análise de dados educacionais, o desenvolvimento de uma metodologia para a análise de dados educacionais. Os métodos de análise de dados educacionais estão sendo integrados à pedagogia da ciência de dados. A aplicação de métodos de análise de dados educacionais depende dos objetivos da análise, dos objetos analisados e dos tipos de dados educacionais. Em nossa pesquisa e desenvolvimento (FIOFANOVA, 2020b; 2020c), sistematizamos métodos de análise de dados educacionais e desenvolvemos um construtor para o desenvolvimento de dados-competências de professores com base em um banco de dados de casos de análise de dados educacionais. Os métodos de análise de dados educacionais incluem: 1) métodos de previsão baseados na análise de dados educacionais; 2) métodos de identificação da estrutura de dados educacionais; 3) métodos para identificar a relação entre as variáveis em um conjunto de dados.
O primeiro grupo de métodos é usado, por exemplo, para prever os resultados das Olimpíadas com base na análise dos dados dos problemas a serem resolvidos; para prever a escolha do ensino especializado pelos escolares com base nos dados dos pré-testes de perfil e da participação no concurso para trabalhos de concepção e investigação etc.). Por exemplo: na plataforma digital do NRU HSE - https://www.hse.ru/secondary/distrlyceum - todos os anos os alunos participam nas sessões do projeto "Território das amostras", onde conhecem o corpo docente do NRU HSE. Os dados são registados numa plataforma digital e são posteriormente utilizados por professores e tutores para prever perfis de formação para o próximo ano, bem como para prever áreas de formação no ensino superior.
O segundo grupo de métodos é utilizado, por exemplo, para analisar os dados de alunos com diferentes tipos de dificuldades de aprendizagem de forma a conceber a estrutura da aula tendo em conta as características desses alunos. Por exemplo: na plataforma digital do Centro de Qualidade da Educação de Moscou - https://mcko.ru/pages/monitoring_and_diagnostics - na seção "Monitoramento e Diagnóstico"
RPGE– Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. esp. 3, p. 1700-1716, set. 2021. e-ISSN: 1519-9029
através da conta pessoal do professor, você pode se familiarizar com os resultados dos diagnósticos independentes dos alunos nas disciplinas. Esses dados educacionais, que servem de base para a análise, permitem ao professor identificar alunos com diferentes níveis de aproveitamento escolar, competências disciplinares. Além disso, ao projetar uma aula eletrônica na plataforma da Escola Eletrônica de Moscou - http://mes.mosedu.ru - o professor pode desenvolver uma estrutura de tarefas educacionais diferenciadas dependendo da estrutura das realizações e dificuldades educacionais identificadas dos alunos com base nos resultados da análise estrutural de seus dados educacionais.
O terceiro grupo de métodos é usado para identificar a relação entre as variáveis em um conjunto de dados. Por exemplo, a relação entre a frequência às aulas, inclusive on-line (aulas eletrônicas), e os resultados educacionais dos escolares sobre os temas do programa educacional, a relação entre as peculiaridades de organização das atividades do projeto dos escolares em sala de aula e os resultados do desenvolvimento de competências meta- disciplinares após o desenvolvimento de programas educacionais. Por exemplo: na plataforma educacional digital "Petersburg Education" - https://petersburgedu.ru/qualification/ - o professor tem acesso a informações sobre o desempenho acadêmico atual dos alunos, os resultados dos diagnósticos da qualidade do ensino em sala de aula e na escola (por meio do ESIA - um sistema unificado de identificação e autenticação), e também versões eletrônicas dos programas de trabalho em assuntos. Ao analisar os resultados dos diagnósticos de letramento em leitura em 4 anos de duas escolas da mesma cidade de acordo com os blocos de avaliação das habilidades de leitura: 1) orientação no conteúdo do texto, 2) interpretação das informações, 3) julgamentos de valor, 4) criando seus próprios textos; descobriu-se que em uma escola os resultados dos alunos da quarta série do bloco 4 foram significativamente piores. A utilização de métodos analíticos para identificação de relações entre variáveis possibilitou identificar a relação entre as características dos programas de trabalho nas disciplinas e os resultados das habilidades de leitura dos escolares. Em particular: para um professor cujos alunos apresentaram resultados baixos no bloco 4 "criando seus próprios textos", o programa de trabalho não previa uma hora de atividade de projeto e não incluía no programa educacional formas de organizar as atividades educacionais para atingir meta-temas e resultados pessoais.
Ensinar aos professores os métodos de análise de dados educacionais desenvolve a competência em dados dos professores, permite aos professores estarem mais atentos ao planejamento das atividades pedagógicas, à organização das atividades pedagógicas com base na análise dos dados educacionais.
A análise dos resultados de uma entrevista estruturada com professores permite-nos concluir que os professores com competências de dados desenvolvidas são mais eficazes na implementação de atividades de desenvolvimento (como função de trabalho) a partir da análise dos dados educacionais das crianças.
Finalizando, formularemos conclusões e recomendações.
Os dados analisados em plataformas educacionais digitais dependem da arquitetura da plataforma educacional digital, das abordagens em que se baseia o design da plataforma educacional digital ("educação industrial" vs "educação pós-industrial"). Os tipos de dados que os professores usam em várias plataformas educacionais digitais e serviços de análise de dados digitais: dados sobre resultados educacionais, dados sobre eleições individuais, dados sobre tarefas de projeto sendo resolvidas. Isso nos permite analisar o desenvolvimento humano não só no contexto do presente, mas também no contexto do seu futuro possível (educação voltada para o futuro) pelos meios educativos do presente.
As conclusões tiradas da análise dos dados educacionais são valiosas, pelo menos não em si mesmas, mas para a organização da educação desenvolvimentista. Em conexão com o desenvolvimento da infraestrutura digital de análise de dados educacionais, o leque de tarefas profissionais do professor, a lógica de organizar as atividades educacionais "a partir do resultado" está mudando.
A estrutura das tarefas profissionais e das ações laborais do professor na análise de dados educacionais para a organização da educação e do desenvolvimento inclui: engenharia- construtiva (utilizando plataformas digitais e serviços de análise de dados digitais como fontes de dados sobre o desenvolvimento infantil), analítica e metodológica (utilizando métodos de análise de dados educacionais), organizacional-prático (organização da prática de desenvolvimento por meios educacionais com base nos dados educacionais analisados).
A resolução de tarefas profissionais requer o desenvolvimento das competências relevantes dos professores: competências digitais (a competência de escolher e utilizar um serviço de análise digital de dados entre os disponíveis na infraestrutura tecnológica digital da educação); competência em dados (competência na escolha e aplicação de métodos de análise de dados educacionais); evidência desenvolvimento-competência (competência da organização do desenvolvimento por meios educacionais com base na análise de dados).
A tendência de ampliação das atividades, incluindo as atividades pedagógicas profissionais, está associada aos novos meios técnicos e às mudanças tecnológicas no campo da educação no contexto da transformação digital, o desenvolvimento de ambientes educacionais digitais.
A análise das mudanças nas tarefas profissionais e nas funções laborais da atividade profissional de um professor é a base para a modernização dos padrões profissionais.
Os dados analisados em plataformas educacionais digitais para organização do desenvolvimento de escolares devem estar incluídos na estrutura dos elementos da Norma para o ambiente educacional digital.
ANDERSON, C. Analytical culture: From data collection to results. Litagent MIF, Moscow, 2017.
BETELIN, V.V.; KUSHNIRENKO, A.G.; SEMENOV, A.L.; SOPRUNOV, S.F. On digital
CARRETERO GOMEZ, S.; VUORIKARI, R.; PUNIE, Y. DigComp 2.1: The Digital
Competence Framework for Citizens with eight proficiency levels and examples of use. Publications Office of the European Union, Luxembourg, 2017. Disponível em: https://publications.jrc.ec.europa.eu/repository/handle/JRC106281
DAVYDOV, V.V. Theory of developmental learning. INTOR, Moscow, 1996.
DHANRAJANI, S. Al and Analytics Accelerating Business Decisions. The new normal in Strategy and Enterprise Transformation. New Delhi: Wiley India Pvt. Ltd., 2018.
FIOFANOVA, O.A. Analysis of the current state of research in the field of data-based education management. Values and meanings, v. 1, n. 65, p. 71-83, 2020a.
FIOFANOVA, O.A. Data-based pedagogy – a strategic direction of pedagogical education: competencies for analyzing educational data in professional and educational standards. The world of university science: culture, education, n. 9, p. 155-167, 2020b.
FIOFANOVA, O.A. Designer of competence modules of professional development programs for data experts in the field of education (Designer of competencies for data experts in education). Certificate of registration of the database (patent) 2020622411, Application No. 2020622293, November 11, 2020c.
ICEDM 2021: 15. International Conference on Educational Data Mining. London, United Kingdom, December 9-10, 2021. Disponível em: https://waset.org/educational-data-mining- conference-in-december-2021-in-london
INMON, W.H.; LINSTEDT, D.; LEVINS, M. Data Architecture: A Primer for the Data Scientist. Academic Press, Moscow, 2019.
KENNEDY, K.; PETERS, M.; THOMAS, M. How to use the analysis of value-added data to improve the education of schoolchildren: A guide for schools and school district leaders. HSE, Moscow, 2012.
MARGOLIS, A.A. The zone of immediate development (ZBR) and the organization of educational activities of students. Psychological science and education, v. 25, n. 4, p. 6-27, 2020.
NOCKER, M., VANIA, S. Big Data and Human Resources Management: The Rise of Talent Analytics. Social Sciences, v. 8, n. 10, p. 1-19, 2019.
SHCHEDROVITSKY, G.; ROZIN, V.; ALEKSEEV, N.; NEPOMNYASHCHAYA, N.
SULLIVAN, J. Talent Management and Big Data Lessons. Talent Management Thought Leaderschip, November 19, 2012. Disponível em: https://drjohnsullivan.com/uncategorized/4- talent-management-and-big-data-lessons-from-the-presidential-election/
VYGOTSKY, L.S. Psychology of child development. Eksmo, Moscow, 2004.
ZINCHENKO, V.P.; MORGUNOV, E.B. A developing person: Essays of Russian psychology. Trivola, Moscow, 1994.
FIOFANOVA O. A. Arquitetura de dados sobre plataformas educacionais digitais e competência dos professores. Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. esp. 3, p. 1700-1716, set. 2021. e-ISSN:1519-9029. DOI:
https://doi.org/10.22633/rpge.v25iesp.3.15591
ARQUITETURA DE DADOS SOBRE PLATAFORMAS EDUCACIONAIS DIGITAIS E COMPETÊNCIA DOS PROFESSORES
ARQUITECTURA DE DATOS EN PLATAFORMAS EDUCATIVAS DIGITALES Y DATOS - COMPETENCIA DE LOS PROFESORES
Olga A. FIOFANOVA1
RESUMO: O trabalho tem como objetivo identificar a arquitetura de dados e estruturar os tipos de dados educacionais analisados nas diversas plataformas educacionais digitais. O artigo apresenta materiais de pesquisa pelo método de análise genética das ações laborais e tarefas profissionais de um professor, necessários para uma organização competente de desenvolvimento com base em dados. O Estudo 1 estudou 25 plataformas educacionais digitais para educação geral de diferentes países, incluindo 9 russas (públicas, privadas e corporativas). O Estudo 2 incluiu o método de análise genética das ações laborais e tarefas profissionais dos professores para organizar o desenvolvimento das crianças com base na análise de dados educacionais. Os resultados obtidos permitem dizer que no ambiente educacional digital se amplia o leque de atribuições profissionais e se transformam as ações laborais do professor na implementação de atividades de desenvolvimento (como função laboral) a partir da análise de dados educacionais.
PALAVRAS-CHAVE: Arquitetura de dados. Análise de dados educacionais. Competência de dados de um professor. Educação para o desenvolvimento. Ampliação do desenvolvimento.
RPGE– Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. esp. 3, p. 1762-1778, Sep. 2021. e-ISSN: 1519-9029
RESUMEN: El trabajo tiene como objetivo identificar la arquitectura de datos y estructurar los tipos de datos educativos analizados en diversas plataformas educativas digitales. El artículo presenta materiales de investigación por el método de análisis genético de acciones laborales y tareas profesionales de un docente, necesarios para una organización competente del desarrollo basada en datos. El estudio 1 estudió 25 plataformas educativas digitales para educación general de diferentes países, incluidas 9 rusas (públicas, privadas y corporativas). El estudio 2 incluyó el método de análisis genético de las acciones laborales y tareas profesionales de los docentes para organizar el desarrollo de los niños a partir del análisis de datos educativos. Los resultados obtenidos permiten decir que en el entorno educativo digital se amplía el abanico de tareas profesionales y las acciones laborales del docente se transforman en la implementación de actividades de desarrollo (como función laboral) a partir del análisis de datos educativos.
PALABRAS CLAVE: Arquitectura de datos. Análisis de datos educativos. Competencia de datos de un maestro. Educación para el desarrollo. Amplificación del desarrollo.
This work touches upon the dimension of education on which its developmental potential depends - the organization of the development of schoolchildren based on the analysis of educational data. According to the results of the study, the types of educational data are characterized and classified, the analysis of which is available to teachers on digital educational platforms, services and is possible to solve the problems of organizing the development of schoolchildren. In this regard, such opportunities for the analysis of educational data for the organization of development necessitate the competence of data analysis among teachers in practice. Accordingly, there is a need for a conceptual rethinking of data science in a sectoral aspect - in the field of education. Data Driven Pedagogy as a concept of pedagogical theory and the phenomenon of pedagogical practice has a history of development no more than 10 years (FIOFANOVA, 2020a). This concept allows to deepen the theory of developmental education in a new perspective (VYGOTSKY, 2004; DAVYDOV, 1996; MARGOLIS, 2020) and the practice of reflective education based on the awareness of educational results and analytics of educational data (BETELIN et al., 2020; KENNEDY; PETERS; THOMAS, 2012; FIOFANOVA, 2020b; ICEDM, 2021).
It is necessary to turn to psychology and logic in the study of developmental processes in educational conditions. Development psychology is disclosed in the theory of developmental education (VYGOTSKY, 2004; DAVYDOV, 1996; MARGOLIS, 2020) through the activity methods of education, age characteristics of the child's leading activity, the zone of the child's proximal development. Logic (content-genetic logic) in the study of the
development of activity reveals the meaning of the reflection of activity and the methods of its implementation, the situation of the rupture of the means of activity (SHCHEDROVITSKY, 1993). "Pedagogical methods can be conditionally decomposed into pedagogical-logical" and "pedagogical-psychological" (SHCHEDROVITSKY et al., 1993; DECREE OF THE PRESIDENT OF THE RUSSIAN FEDERATION NO. 642, 2016), to be asked to students, -
everywhere the only “working” and effective today are not psychological or sociological and not special-subject (mathematical, physical, chemical etc.), but only logical means and methods ”(Pedagogy and Logic) (SHCHEDROVITSKY et al., 1993; FIOFANOVA et al., 2020a).
In the context of the development of digital educational platforms and services for the analysis of educational data, teachers gained access to systematized educational data (data on the results of mastering educational programs, data on the personal choice of profiles, subjects, levels of difficulty, ways of solving problems etc.), which became the basis for the application of the logic of the design of educational programs from the result, the design of educational activities based on the results of the assessment of added value (MARGOLIS, 2020), as well as the basis for the reflection of educational activities and educational results organized with students. That is, in addition to psychological means and knowledge about psychological patterns of development in educational conditions, logical analysis of data in education began to be used in pedagogical activity. In the context of the interdisciplinarity of the development of scientific knowledge, the methods of data science are integrated into pedagogy, on the basis of which the methodology and technology for the analysis of educational data is developed. Based on the analysis of educational data, the teacher carries out the production of means of developmental education, upbringing (FIOFANOVA, 2020b).
Data analysis as a logical tool for organizing activities, production, human communities has become intensively used in various fields: in the information industries (ANDERSON, 2017), in business (INMON; LINSTEDT; LEVINS; 2019; DHANRAJANI,
2018), in HR / talent management (NOCKER; VANIA, 2019; SULLIVAN, 2012), as well as in the field of education (BETELIN et al., 2020; KENNEDY; PETERS; THOMAS, 2012; FIOFANOVA, 2020b). In an interdisciplinary context, data analysis becomes the subject of discussion at various international conferences (EDM, 2021; ICEDM 2021, p. 15). International Conference on Educational Data Mining, 2021; International Conference on Educational Data Mining (ICEDM, 2021). Big data is included in the group of priority technologies of the National Technology Initiative, the Strategy of Scientific and
Technological Development of Russia (End-to-end technologies of NTI, s/d; DECREE OF THE PRESIDENT OF THE RUSSIAN FEDERATION NO. 642, 2016).
In the field of education in the context of digital transformation, the development of institutional mechanisms for assessing the quality of education, the creation of conditions for the choice of individual educational routes in the digital educational environment, the accumulation of data sets, it is necessary to investigate:
how the logic of pedagogical activity changes during the implementation of educational programs based on the analysis of educational data;
what types of educational data can be the basis of pedagogical actions for the organization of developmental education;
what competencies are necessary for a teacher to analyze educational data in the implementation of developmental education;
How can this kind of competence be included in educational and professional standards?
Research objectives: 1) to study the architecture of the analyzed data on digital educational platforms and platforms for assessing the quality of education to ensure the development of a person (schoolchildren), 2) to study what competencies in data analysis are necessary for a teacher to organize the development of schoolchildren.
Research methods included the following. The method of structural and functional analysis of digital educational platforms of general education made it possible to identify the architecture of the analyzed data, the types of data that teachers work with.
The method of interviewing teachers and the method of genetic analysis of labor actions and professional tasks of a teacher made it possible to identify changes in the logic of labor actions of teachers, a change (expansion) of the range of professional tasks of pedagogical activity in a digital educational environment, and also made it possible to systematize and designate competencies necessary for a competent organization of developmental education based on the analyzed data.
Using the first group of methods, 25 digital educational platforms of general education from different countries were studied, including 9 Russian (public, private and corporate).
Using the second group of methods, 1250 general education teachers were interviewed. Using the method of structured interviews, we studied the issues of changing
labor actions and professional tasks of teachers for organizing the development of children based on the analysis of educational data.
The results obtained make it possible to say that in the digital educational environment the range of professional tasks is expanding, and the labor actions of the teacher are transformed in the implementation of developmental activities (as a labor function) based on the analysis of the educational data of children.
Structured interview questions included:
For the purpose of solving what professional tasks and in what pedagogical situations did you turn to digital platforms and data analytics services?
Based on what educational data of students did you make pedagogical decisions? What kind of pedagogical decisions were they (about adjusting educational programs, teaching methods, expanding the possibilities for choosing educational trajectories, organizing a developmental situation, what else - tell us?)
What is the sequence of your actions in working with educational data to organize the practice of child development in education?
Analysis, statistical processing and interpretation of the structured interview data revealed the following.
The range of professional tasks of teachers is expanding, in the structure of professional tasks the analytical becomes system-forming - the task of analyzing educational data for a reasonable choice of pedagogical means of organizing development, the developmental activity of a child.
Most often, teachers turn to digital educational platforms of a regional format, which are selected by participants in educational relations for the implementation of educational programs (for example: Moscow e-school, Perm e-school, Ugra e-school, Ural e-school, e- school of the Moscow region - the school portal of the Moscow region), and also to digital educational platforms of a federal scale, for example: the Russian electronic school, the electronic platform for personalized education "Sberklass", the electronic platform "Foxword". In addition, teachers use digital data analytics services using electronic platforms of regional centers for assessing the quality of education (data of subject diagnostics, data of independent quality assessment), they also use digital portals for final attestation of students in the form of data analytics for the Unified State Exam, OGE. Less often they use the
analysis of data available on the electronic platforms of the Olympiads (All-Russian Olympiad for schoolchildren, the NTI Olympiad, the Olympiad of Megalopolises, the platforms of specialized university Olympiads: Golden Tower, Highest Sample, Conquer the Sparrow Hills, MAMI Engineering Olympiad, Kurchatovskaya Olympiad etc.).
Accordingly, teachers can formulate judgments about the types of educational data used in pedagogical analysis only based on digital educational platforms and digital data analytics services they are familiar with. After all, turning to a certain minimum of digital services for analyzing educational data for the implementation of developmental activities is not regulated by professional standards, job responsibilities, standards of the digital educational environment, and this kind of analytics has not yet become an internal cultural norm of the professional community.
Thus, it can be noted: if the federal state educational standards of general education fix the requirements for the results of mastering educational programs, then the requirements for the analytics of these results, methods of analyzing educational data reflecting the "achievement - not achievement" of educational results are in no way regulated or indicated for teachers as possible foundations of pedagogical activity and pedagogical tools for analyzing development.
When studying the transforming labor actions of teachers in digital educational environments, the answers of teachers to the question of a structured interview were analyzed: "What is the sequence of your actions in working with educational data for organizing the practice of child development in education?". Analysis and processing of data on the generalized answers of teachers made it possible to identify a sequence based on the following logic of actions: a) search for sources on data on a digital educational platform or on other digital services; b) data analysis using available methods of analysis (personal methods of mental analysis "manual" or technological analysis of data using available services on digital platforms); c) substantiation on the basis of data analysis of certain methods of pedagogical actions to organize the development of children in the conditions of the educational process.
The genesis of "new" labor actions in the labor activity of a teacher is associated with technological innovations in the form of services for collecting and storing educational data, as well as with the conditions for carrying out educational activities by means of digital educational platforms.
Structural and functional analysis of labor actions in the analysis of educational data made it possible to identify their structure and functions, as well as designate (name) these "new" labor actions:
engineering and design (use of digital platforms and digital data analytics services);
analytical and methodological (application of data analysis methods);
organizational and practical (organization of development practice) (Table 1).
The structure of professional tasks for the analysis of educational data | The functions of labor actions for the implementation of training, education, development based on the analysis of educational data |
engineering and structural | using digital platforms and digital data analytics services as sources of data on child development |
analytical and methodological | application of methods of analysis of educational data |
organizational and practical | organization of development practices by educational tools based on the analyzed educational data |
Source: Prepared by the authors
Accordingly, the above labor actions require teachers to implement professional competencies: digital competence (competence in choosing and using a digital data analysis service from among those available in the digital technological infrastructure of education), data competence (competence in choosing and applying methods for analyzing educational data), competence organization of development by educational means (evidence development/ evidence-based education) (Table 2).
The structure of professional tasks for the analysis of educational data | Professional competence for the implementation of professional tasks |
engineering and structural | digital competencies (the competence of choosing and using a digital data analysis service from among those available in the digital technological infrastructure of education) |
analytical and methodological | data-competence (competence in the selection and application of methods for analyzing educational data) |
organizational and practical | evidence development - competence (competence of the organization of development by educational means based on data analysis) |
Source: Prepared by the authors
In the European model of digital competencies DigCompEdu (Fig. 1), the competence of data analysis is considered congruent with the pedagogical function - the empowerment of students (CARRETERO GOMEZ; VUORIKARI; PUNIE, 2017).
Source: Carretero Gomez, Vuorikari and Punie (2017)
The European Qualifications Framework and the National Qualifications Framework for Education in Russia are somewhat different. The competence of data analysis in the European model of competence in education is considered in the structure of the digital competence of the teacher and separately from the subject competence, but with a related common function - the empowerment of students. In Russian educational practice in the context of the institutionalized principles of developmental education and the traditional structure of pedagogical labor functions in education: the activities of teaching, upbringing, development, "analysis of educational data" as a professional task is included in the implementation of these three labor functions of a teacher. And it can also be implemented, along with the digital competencies of the teacher, both the competence of the analysis of educational data, and in the structure of subject competence - when the content of education in a subject is designed on the basis of data on the development of various industries in the context of the academic subject (but such an approach to constructing the content of education is possible only in the model of project-oriented education).
The tendencies of amplification (complication, enrichment) of forms of activity with new technical means have long been the subject of attention of the entire cycle of the sciences of labor activity (ZINCHENKO; MORGUNOV, 1994). In developmental psychology, amplification mechanisms are disclosed in the works of V.P. Zinchenko.
In the context of the digital transformation of education, the emergence of new technological means of organizing developmental education, the question is raised about the need to improve the professional standard of a teacher as a response to the challenges of technological changes in education and the associated deepening of labor, the demand for new professional competencies of a teacher in developmental education.
How do educators use educational data analytics in organizing education and child development? A representation of this can be found in the study of public reports of educational organizations, reports on self-examination of educational organizations, as well as in the analytical reports of teachers on the implementation of educational programs.
In our study, the structured interview included the following question:
Based on what educational data of students did you make pedagogical decisions? What kind of pedagogical decisions were they (about adjusting educational programs, teaching methods, expanding the possibilities for choosing educational trajectories, organizing a developmental situation, what else? - tell me).
Based on the results of teachers' answers to interview questions, the following feature of working with data was revealed: if the data on educational results are low, then teachers try to compensate for the deficiencies with external resources: planning advanced training courses, searching for additional digital training simulators, transferring the problematic task to the school psychological service, and least of all based on the results of the analysis of educational data, it is planned to change the ways of organizing educational activities, adjusting educational programs, organizing the activities of participants in educational relations.
Educators characterize the types of educational data analyzed, depending on the digital educational platforms and digital data services with which they work. But the fact is that different digital educational platforms have different data architectures and imply different analytics capabilities.
Consider three types of educational data that educators deal with.
Data on educational outcomes. These are data on the results of the development of educational programs, data on subject diagnostics systematized on digital platforms of regional centers for assessing the quality of education, data on intermediate and current
RPGE– Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. esp. 3, p. 1762-1778, Sep. 2021. e-ISSN: 1519-9029
certification in subjects, data on solving educational problems with known answers (correct answers), systematized on digital educational platforms. This kind of data is represented in the data architecture of all digital educational platforms and education quality assessment platforms. This type of educational data of schoolchildren is considered by certification commissions as the results of pedagogical activities in the certification of teachers. This type of educational data is an important element of the traditional classroom education system. But this kind of data does not in any way reflect the ability to choose educational content, the method of solving the educational problem, the level of difficulty of the problem, the topic of the educational research, etc.
Data on the individual choices of children is an important element of the Pedagogy of Self-Determination as a modern model of education. The Law on Education in Russia (Article 34, Clause 3) regulates the choice and implementation of an individual curriculum. But the right of such implementation depends on the technological architecture of the digital educational platform. The Russian e-school provides a choice by ages and academic subjects, the Moscow e-school, in addition to the above, provides an opportunity to choose according to cognitive interests and over-subject topics through the "smart city school" service, the Foxword digital educational platform - on functional development tasks, Sberklass - provides a choice on the tasks of personalized development of "future skills" through the digital service "Navigator of the skills of the XXI century."
Why is it pedagogically important to design activities with choices and data on individual choices? These data are fundamental for the analysis of human development and education in the methodology of cultural-historical theory, psychology and pedagogy of development, activity pedagogy, pedagogy of self-determination.
Such pedagogy of digital educational platforms is aimed at developing in generation next its own cultural norm of managing its own education.
Regarding data architecture, two fundamentally different approaches should be noted. The education of the industrial era is a substantively organized educational material, control and analysis of data on the acquired volume of knowledge and reproductive skills. Education of the post-industrial era is a convergently organized content of education in educational content, control and analysis of data on the development of productive activities, personal choices in solving project problems.
Therefore, if earlier the carriers of the content of education were regulated in the form of textbooks included by order of the Ministry in the federal list of textbooks, now the
Standard of the digital educational environment is required (It is necessary to develop a standard for the digital educational environment, 2021).
Currently, on different digital educational platforms, there are different opportunities for students to choose developmental services, educational content, methods of mastering educational material, which, in fact, latently creates a situation of educational inequality.
Another type of data, relatively new for pedagogy and education, but important in the postindustrial structure of education, is data on the project tasks solved by students. The activity, the result of which is this kind of data, is regulated by the federal state standards of general education - "project activity of students". The purpose of the activity is to develop in the next generation the ability to solve unsolved problems, design the future, model their future in relation to promising professions.
On what digital educational platforms can an educator work with this kind of data? Basically, these are corporate education platforms created by public corporations. For example, the digital educational platform of the Rusnano School League - Digital Nanograd, the digital educational and Olympiad platform of the NTI circle movement - NTI Olympiad, where children can not only choose or independently set a project task, but also assemble a project team on their own.
Thus, we can conclude that there is a large difference in the data architecture on digital educational platforms. The ability and skill of teachers to work with different types of educational data depends on the technological infrastructure of education, on the design features of data architecture on different digital educational platforms.
This issue concerns not only Russian digital educational platforms, but it is also typical for other countries.
Using the method of structural and functional analysis, the digital educational platforms of general education in different countries, both the aforementioned Russian and other countries digital educational platforms, were studied. For example:
Kundelik (https://portal.kundelik.kz/ru/) (Kazakhstan)
Nazarbayev Intellectual Schools (https://www.nis.edu.kz/) (Kazakhstan),
SCHOOLS.BY (https://schools.by/) (Belarus)
Pidruchnik (https://www.pidruchnyk.ua)
Shho Dennik (http://shodennik.ua//) (Ukraine)
EKOOL (https://ekool.eu/index_en.htm), (Estonia),
ESIS (http://www.esis.de/) (Germany),
Frog Education (https://www.frogeducation.com/)
RPGE– Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. esp. 3, p. 1762-1778, Sep. 2021. e-ISSN: 1519-9029
EdLounge (https://www.edlounge.com/) (UK)
Tietlo Education Learning https://www.tieto.com/en/who-we-serve/public- sector/education/tieto-education-learning/ (Finland),
17zuoye https://ucenter.17zuoye.com/ (China).
The data architecture on these digital educational platforms is designed in different ways and depends on national educational ideals, educational standards, tasks of involving schoolchildren in socio-economic development projects of countries, in European countries in data architecture - data on future skills. The design of the data architecture and the choice of data collected for analytics depends on the legislation and legal regulations for working with personal data in countries, the institutional forms of functioning of digital platforms and data analysis services depend on the education management system built in countries. Personalized forms of storing educational data: personal digital portfolio, educational data in the student's personal account, convertible upon transition to the next level of education, digital certificates of educational achievements, etc. - depend on the legal regulations for working with educational data in the countries of the world, the projected mechanisms for the implementation of the lifelong learning concept, the projected mechanisms for integrating formal and non-formal education, the mechanisms of communication between education and the labor market (digital portfolio of competencies) implemented in countries.
Also, in the countries of the world, the tasks of developing the competencies of teachers in the analysis of educational data, the development of a methodology for the analysis of educational data are being solved. Educational data analysis methods are being integrated into pedagogy from data science. The application of methods for analyzing educational data depends on the goals of the analysis, the objects being analyzed and the types of educational data. In our research and development (FIOFANOVA, 2020b; 2020c), we systematized methods for analyzing educational data and developed a constructor for the development of data-competencies of teachers based on a database of educational data analysis cases. Methods for analyzing educational data include: 1) forecasting methods based on the analysis of educational data; 2) methods for identifying the structure of educational data; 3) methods for identifying the relationship between variables in a dataset.
students participate in project sessions "Territory of samples", where they get acquainted with the faculties of the NRU HSE. The data is recorded on a digital platform and is further used by teachers and tutors to predict education profiles for the next year, as well as to predict areas of training in higher education.
The second group of methods is used, for example, to analyze the data of students with different types of learning difficulties in order to design the structure of the lesson taking into account the characteristics of students with different types of learning difficulties. For example: on the digital platform of the Moscow Center for the Quality of Education - https://mcko.ru/pages/monitoring_and_diagnostics - in the "Monitoring and Diagnostics" section through the teacher's personal account, you can get acquainted with the results of independent diagnostics of students in subjects. These educational data, which are the basis for the analysis, allow the teacher to identify students with different levels of educational achievements, subject competencies. Further, when designing an electronic lesson on the platform of the Moscow Electronic School - http://mes.mosedu.ru - the teacher can develop a structure of differentiated educational tasks depending on the structure of the identified educational achievements and difficulties of schoolchildren based on the results of the structural analysis of their educational data.
The third group of methods is used to identify the relationship between variables in a dataset. For example, the relationship between the attendance of lessons, including on-line (electronic lessons), and the educational results of schoolchildren on the topics of the educational program, the relationship between the peculiarities of organizing the project activities of schoolchildren in the classroom and the results of the development of metasubject competencies following the development of educational programs. For example: on the digital educational platform "Petersburg Education" - https://petersburgedu.ru/qualification/ - the teacher has access to information about the current academic performance of students, the results of diagnostics of the quality of education in the classroom and school (through the ESIA - a unified system of identification and authentication), and also electronic versions of work programs in subjects. When analyzing the results of reading literacy diagnostics in 4 grades of two schools of the same city according to blocks of reading skills assessment: 1) orientation in the content of the text, 2) interpretation of information, 3) making value judgments, 4) creating your own texts; it turned out that in one school the results of the fourth-graders in block 4 were significantly worse. The use of analytical methods for identifying relationships between variables made it possible to identify the relationship between the features of work programs in subjects in connection with the results of the
RPGE– Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. esp. 3, p. 1762-1778, Sep. 2021. e-ISSN: 1519-9029
reading skills of schoolchildren. In particular: for a teacher whose students showed low results in block 4 "creating their own texts", the work program did not provide for an hour of project activity and did not include in the educational program ways of organizing educational activities to achieve meta-subject and personal results.
Teaching teachers the methods of analyzing educational data develops the data- competence of teachers, allows teachers to be more aware of the planning of pedagogical activities, the organization of educational activities based on the analysis of educational data.
An analysis of the results of a structured interview of teachers allows us to conclude that teachers with developed data competencies are more effective in implementing developmental activities (as a labor function) based on the analysis of the educational data of children.
In conclusion, we will formulate conclusions and recommendations.
The data analyzed on digital educational platforms depends on the architecture of the digital educational platform, on the approaches on which the design of the digital educational platform is based ("industrial education" vs "post-industrial education"). The types of data that teachers use on various digital educational platforms and digital data analytics services: data on educational outcomes, data on individual elections, data on project tasks being solved. This allows us to analyze human development not only in the context of the present, but also in the context of his possible future (future oriented education) by educational means of the present.
The conclusions drawn from the analysis of educational data are valuable, at least not in themselves, but for the organization of developmental education. In connection with the development of the digital infrastructure of educational data analytics, the range of professional tasks of the teacher, the logic of organizing educational activities "from the result" is changing.
The structure of the teacher's professional tasks and labor actions in the analysis of educational data for the organization of education and development includes: engineering- constructive (using digital platforms and digital data analytics services as sources of data on child development), analytical and methodological (using methods of analyzing educational data), organizational-practical (organization of development practice by educational means based on the analyzed educational data).
Solving professional tasks requires the development of the relevant competencies among teachers: digital competencies (the competence of choosing and using a digital data analysis service from among those available in the digital technological infrastructure of education); data-competence (competence in choosing and applying methods for analyzing educational data); evidence development-competence (competence of the organization of development by educational means based on data analysis).
The trend of amplification of activities, including professional pedagogical activities, is associated with new technical means and technological changes in the field of education in the context of digital transformation, the development of digital educational environments.
Analysis of changes in professional tasks and labor functions of a teacher's professional activity is the basis for the modernization of professional standards.
The data analyzed on digital educational platforms for organizing the development of schoolchildren must be included in the structure of the elements of the Standard for the digital educational environment.
ANDERSON, C. Analytical culture: From data collection to results. Litagent MIF, Moscow, 2017.
BETELIN, V.V.; KUSHNIRENKO, A.G.; SEMENOV, A.L.; SOPRUNOV, S.F. On digital
CARRETERO GOMEZ, S.; VUORIKARI, R.; PUNIE, Y. DigComp 2.1: The Digital
Competence Framework for Citizens with eight proficiency levels and examples of use. Publications Office of the European Union, Luxembourg, 2017. Available: https://publications.jrc.ec.europa.eu/repository/handle/JRC106281
DAVYDOV, V.V. Theory of developmental learning. INTOR, Moscow, 1996.
DHANRAJANI, S. Al and Analytics Accelerating Business Decisions. The new normal in Strategy and Enterprise Transformation. New Delhi: Wiley India Pvt. Ltd., 2018.
FIOFANOVA, O.A. Analysis of the current state of research in the field of data-based education management. Values and meanings, v. 1, n. 65, p. 71-83, 2020a.
FIOFANOVA, O.A. Data-based pedagogy – a strategic direction of pedagogical education: competencies for analyzing educational data in professional and educational standards. The world of university science: culture, education, n. 9, p. 155-167, 2020b.
FIOFANOVA, O.A. Designer of competence modules of professional development programs for data experts in the field of education (Designer of competencies for data experts in education). Certificate of registration of the database (patent) 2020622411, Application No. 2020622293, November 11, 2020c.
ICEDM 2021: 15. International Conference on Educational Data Mining. London, United Kingdom, December 9-10, 2021. Available: https://waset.org/educational-data-mining- conference-in-december-2021-in-london
INMON, W.H.; LINSTEDT, D.; LEVINS, M. Data Architecture: A Primer for the Data Scientist. Academic Press, Moscow, 2019.
KENNEDY, K.; PETERS, M.; THOMAS, M. How to use the analysis of value-added data to improve the education of schoolchildren: A guide for schools and school district leaders. HSE, Moscow, 2012.
MARGOLIS, A.A. The zone of immediate development (ZBR) and the organization of educational activities of students. Psychological science and education, v. 25, n. 4, p. 6-27, 2020.
NOCKER, M., VANIA, S. Big Data and Human Resources Management: The Rise of Talent Analytics. Social Sciences, v. 8, n. 10, p. 1-19, 2019.
SHCHEDROVITSKY, G.; ROZIN, V.; ALEKSEEV, N.; NEPOMNYASHCHAYA, N.
SULLIVAN, J. Talent Management and Big Data Lessons. Talent Management Thought Leaderschip, November 19, 2012. Available: https://drjohnsullivan.com/uncategorized/4- talent-management-and-big-data-lessons-from-the-presidential-election/
VYGOTSKY, L.S. Psychology of child development. Eksmo, Moscow, 2004.
ZINCHENKO, V.P.; MORGUNOV, E.B. A developing person: Essays of Russian psychology. Trivola, Moscow, 1994.
FIOFANOVA O. A. Data architecture on digital educational platforms and data- competence of teachers. Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. esp. 3, p. 1762-1778, Sep. 2021. e-ISSN: 1519-9029. DOI:
https://doi.org/10.22633/rpge.v25iesp.3.15591