Tecnologia biométrica de reconhecimento pessoal
RPGE – Revista on line de Política e Gestão Educacional, Araraquara, v. 28, n. 00, e023015, 2024. e-ISSN: 1519-9029
DOI: https://doi.org/10.22633/rpge.v28i00.19390 28
KOHONEN, T. Learning vector quantization. Neural Networks, [S. l.], v. 1, p. 303, 1988.
DOI: 10.1016/0893-6080(88)90334-6.
KOSKIMAKI, H.; JUUTILAINEN, I.; LAURINEN, P.; RÖNING, J. Two-level clustering
approach to training data instance selection: a case study for the steel industry. In: NEURAL
NETWORKS: INTERNATIONAL JOINT CONFERENCE, 2008, Hong Kong. Proceedings
[…]. Los Alamitos: IEEE, 2008. p. 3044–3049. DOI: 10.1109/ijcnn.2008.4634228.
LI, B.; CHI, M.; FAN, J.; XUE, X. Support cluster machine. In: MACHINE LEARNING
INTERNATIONAL CONFERENCE, 24., 2007, Corvallis. Proceedings […]. New York,
2007. p. 505–512. DOI: 10.1145/1273496.1273560.
MADIGAN, D.; RAGHAVAN, N.; DUMOUCHEL, W.; NASON, M. Likelihood-based data
squashing: a modeling approach to instance construction. Data Mining and Knowledge
Discovery, [S. l.], v. 6, n. 2. p. 173–190. DOI: 10.1023/A:1014095614948.
REEVES, C. R.; BUSH, D. R. Using genetic algorithms for training data selection in RBF
networks. In: Instance Selection and Construction for Data Mining. Norwell: Kluwer,
2001. Part VI. p. 339–356. DOI: 10.1007/978-1-4757-3359-4_19.
REINARTZ, T. A. Unifying view on instance selection. Data Mining and Knowledge
Discovery, [S. l.], v. 6, p. 191–210, 2002. DOI: 10.1023/A:1014047731786.
RITTER, G.; WOODRUFF, H.; LOWRY, S.; ISENHOUR, T. An algorithm for a selective
nearest neighbor decision rule. IEEE Transactions on Information Theory, [S. l.], v. 21, n.
6, p. 665–669, 1975. DOI: 10.1109/TIT.1975.1055464.
SANE, S. S.; GHATOL, A. A. A Novel supervised instance selection algorithm.
International Journal of Business Intelligence and Data Mining, [S. l.], v. 2, n 4. p. 471–
495, 2007. DOI: 10.1504/IJBIDM.2007.016384.
SKALAK, D. B. Prototype and feature selection by sampling and random mutation hill
climbing algorithms. In: MACHINE LEARNING: INTERNATIONAL CONFERENCE, 11.,
1994, New Brunswick. Proceedings […]. Burlington: Morgan Kaufmann, 1994. p. 293–301.
DOI: 10.1016/b978-1-55860-335-6.50043-x.
SUBBOTIN, S. The neuro-fuzzy network synthesis and simplification on precedents in
problems of diagnosis and pattern recognition. Optical Memory and Neural Networks
(Information Optics), [S. l.], v. 22, n. 2, p. 97–103, 2013a.
DOI: 10.3103/s1060992x13020082.
SUBBOTIN, S. Methods of sampling based on exhaustive and evolutionary search.
Automatic Control and Computer Sciences, [S. l.], v. 47, n. 3, p. 113–121, 2013b.
DOI: 10.3103/s0146411613030073.
SUYKENS, J. A.; VANDEWALLE, J. Least squares support vector machine classifiers.
Neural Processing Letters, [S. l.], v. 9, n 3. p. 293–300, 1999.
DOI: 10.1023/A:1018628609742.