Tecnologia biométrica de reconhecimento pessoal

Autores

DOI:

https://doi.org/10.22633/rpge.v28i00.19390

Palavras-chave:

Sistema de reconhecimento de objetos, Algoritmo, Visão computacional, Tecnologias biométricas

Resumo

Atualmente, o processamento de imagens é amplamente utilizado em sistemas de segurança para reconhecer pessoas. Para este estudo, foram selecionados algoritmos de aprendizado de máquina, considerando a disponibilidade limitada de dados. O trabalho analisou a área de reconhecimento facial, a relevância deste sistema nos dias de hoje, o reconhecimento biométrico do sistema «Face ID», diversos métodos para o reconhecimento facial e investigou em quais áreas de atividade o sistema de reconhecimento facial é utilizado e para qual finalidade. Como parte do estudo, diversos algoritmos de reconhecimento facial foram analisados. Foi comprovado que todo o sistema de reconhecimento facial pode ser modelado utilizando o método de extração de contornos Violy-Jones e testado com um resultado bem-sucedido de reconhecimento de aproximadamente 75%. As capacidades funcionais da biblioteca de visão computacional OpenCV e outras bibliotecas foram consideradas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Alla Kapiton, National University «Yuri Kondratyuk Poltava Polytechnic»

Associate Professor of the Department of Computer and Information Technologies and Systems. Doctor of Pedagogical Sciences.

Nataliia Kononets, University of Ucoopspilka «Poltava University of Economics and Trade»

Associate Professor of the Department of Economic Cybernetics, Business Economics and Information Systems. Doctor of Pedagogical Sciences.

Volodymyr Mokliak, Poltava V. G. Korolenko National Pedagogical University

Professor of the Department of General Pedagogy and Andragogy. Doctor of Pedagogical Sciences.

Valentyna Onipko, Poltava State Agrarian University

Professor of the Department of Agriculture and Agrochemistry named after V. I. Sazanov, Department of the Construction and Professional Education. Doctor of Pedagogical Sciences.

Serhiy Dudko, Poltava M. V. Ostrogradsky Academy of Continuous Education

Deputy Director. PhD in Pedagogical Sciences.

Vadym Pylypenko, Poltava M. V. Ostrogradsky Academy of Continuous Education

First Deputy Director. PhD of Pedagogical Sciences.

Anna Sokil, Poltava V. G. Korolenko National Pedagogical University

Postgraduate of the Department of General Pedagogy and Andragogy.

Referências

AHA, D. W.; KIBLER, D.; ALBERT, M. K. Instance-based learning algorithms. Machine Learning, [S. l.], v. 6, p. 37–66, 1991. DOI: 10.1023/A:1022689900470.

BARINA, D. Gabor wavelets in image processing. In: CONFERENCE STUDENT EEICT, 17., 2011. Proceedings [...]. Brno: Brno University of Technology. 2011. v. 3, p. 522–526.

BROADLEY, C. E. Addressing the selective superiority problem: automatic algorithm/model class selection. In: MACHINE LEARNING: TENTH INTERNATIONAL CONFERENCE, Amherst, 1993. Proceedings […]. Burlington: Morgan Kaufmann, 1993. p. 17–24. DOI: 0.1016/b978-1-55860-307-3.50009-5.

DOMINGO, C.; GAVALDA, R.; WATANABE, O. Adaptive sampling methods for scaling up knowledge discovery algorithms. In: DISCOVERY SCIENCE: SECOND INTERNATIONAL CONFERENCE, 1999, Tokyo. Proceedings […]. Berlin: Springer, 1999. p. 172–183. DOI: 10.1007/3-540-46846-3_16.

ENGELBRECHT, A. Computational intelligence: an introduction. Sidney: John Wiley & Sons, 2007. 597 p. DOI: 10.1002/9780470512517.

EVANS, R. Clustering for classification: using standard clustering methods to summarise datasets with minimal loss of classification accuracy. Saarbrücken: VDM Verlag, 2008. 108 p.

GATES, G. The reduced nearest neighbor rule. IEEE Transactions on Information Theory, [S. l.], v. 18, n. 3, p. 431–433, 1972. DOI: 10.1109/TIT.1972.1054809.

HART, P. E. The condensed nearest neighbor rule. IEEE Transactions on Information Theory, [S. l.], v. 14, p. 515–516, 1968. DOI: 10.1109/TIT.1968.1054155.

JANKOWSKI, N. Data regularization. In: NEURAL NETWORKS AND SOFT COMPUTING, 5., 2000, Zakopane. Proceedings […]. Częstochowa: Polish Neural Networks Society, 2000. p. 209–214.

JANKOWSKI, N.; GROCHOWSKI, M. Comparison of instance selection algorithms I. Algorithms survey. In: ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, 7., 2004, Zakopane. Proceedings […]. Berlin: Springer, 2004. p. 598–603. (Lecture Notes in Computer Science, v. 3070). DOI: 10.1007/978-3-540-24844-6_90.

JURAFSKY, D.; MARTIN, J. Hidden Markov models. Speech and Language Processing. Draft of November 7, 2016.

KIBBLER, D.; AHA, D. W. Learning representative exemplars of concepts: an initial case of study. In: MACHINE LEARNING INTERNATIONAL WORKSHOP, 4., 1987, Irvine. Proceedings […]. Burlington: Morgan Kaufmann, 1987. p. 24–30. DOI: 10.1016/b978-0-934613-41-5.50006-4.

KOHONEN, T. Learning vector quantization. Neural Networks, [S. l.], v. 1, p. 303, 1988. DOI: 10.1016/0893-6080(88)90334-6.

KOSKIMAKI, H.; JUUTILAINEN, I.; LAURINEN, P.; RÖNING, J. Two-level clustering approach to training data instance selection: a case study for the steel industry. In: NEURAL NETWORKS: INTERNATIONAL JOINT CONFERENCE, 2008, Hong Kong. Proceedings […]. Los Alamitos: IEEE, 2008. p. 3044–3049. DOI: 10.1109/ijcnn.2008.4634228.

LI, B.; CHI, M.; FAN, J.; XUE, X. Support cluster machine. In: MACHINE LEARNING INTERNATIONAL CONFERENCE, 24., 2007, Corvallis. Proceedings […]. New York, 2007. p. 505–512. DOI: 10.1145/1273496.1273560.

MADIGAN, D.; RAGHAVAN, N.; DUMOUCHEL, W.; NASON, M. Likelihood-based data squashing: a modeling approach to instance construction. Data Mining and Knowledge Discovery, [S. l.], v. 6, n. 2. p. 173–190. DOI: 10.1023/A:1014095614948.

REEVES, C. R.; BUSH, D. R. Using genetic algorithms for training data selection in RBF networks. In: Instance Selection and Construction for Data Mining. Norwell: Kluwer, 2001. Part VI. p. 339–356. DOI: 10.1007/978-1-4757-3359-4_19.

REINARTZ, T. A. Unifying view on instance selection. Data Mining and Knowledge Discovery, [S. l.], v. 6, p. 191–210, 2002. DOI: 10.1023/A:1014047731786.

RITTER, G.; WOODRUFF, H.; LOWRY, S.; ISENHOUR, T. An algorithm for a selective nearest neighbor decision rule. IEEE Transactions on Information Theory, [S. l.], v. 21, n. 6, p. 665–669, 1975. DOI: 10.1109/TIT.1975.1055464.

SANE, S. S.; GHATOL, A. A. A Novel supervised instance selection algorithm. International Journal of Business Intelligence and Data Mining, [S. l.], v. 2, n 4. p. 471–495, 2007. DOI: 10.1504/IJBIDM.2007.016384.

SKALAK, D. B. Prototype and feature selection by sampling and random mutation hill climbing algorithms. In: MACHINE LEARNING: INTERNATIONAL CONFERENCE, 11., 1994, New Brunswick. Proceedings […]. Burlington: Morgan Kaufmann, 1994. p. 293–301. DOI: 10.1016/b978-1-55860-335-6.50043-x.

SUBBOTIN, S. The neuro-fuzzy network synthesis and simplification on precedents in problems of diagnosis and pattern recognition. Optical Memory and Neural Networks (Information Optics), [S. l.], v. 22, n. 2, p. 97–103, 2013a. DOI: 10.3103/s1060992x13020082.

SUBBOTIN, S. Methods of sampling based on exhaustive and evolutionary search. Automatic Control and Computer Sciences, [S. l.], v. 47, n. 3, p. 113–121, 2013b. DOI: 10.3103/s0146411613030073.

SUYKENS, J. A.; VANDEWALLE, J. Least squares support vector machine classifiers. Neural Processing Letters, [S. l.], v. 9, n 3. p. 293–300, 1999. DOI: 10.1023/A:1018628609742.

TOMEK, I. An experiment with the edited nearest-neighbor rule. IEEE Transactions on Systems, Man and Cybernetics, [S. l.],v. 6, p. 448–452, 1976. DOI: 10.1109/TSMC.1976.4309523.

WILSON, D. L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, Cybernetics, [S. l.], v. 2, n. 3, p. 408–421, 1972. DOI: 10.1109/TSMC.1972.4309137.

WILSON, D. R.; Martinez, D. R. Reduction techniques for instancebased learning algorithms. Machine Learning, [S. l.],v. 38, n. 3, p. 257–286, 2000. DOI: 10.1023/A:1007626913721.

WINARNO, E.; HADIKURNIAWATI, W.; NIRWANTO, A.; ABDULLAH, D. Multi-view faces detection using viola-jones method. Journal of Physics Conference Series, [S. l.], v. 1114, n. 1, 2018. DOI: 10.1088/1742-6596/1114/1/012068.

YOON, B. J. Hidden Markov models and their application in the analysis of biological sequences. Current Genomics, [S. l.], v. 10, n. 6, p. 402–415, 2009. DOI: 10.2174/138920209789177575.

Publicado

19/06/2024

Como Citar

KAPITON, A.; KONONETS, N.; MOKLIAK, V.; ONIPKO, V.; DUDKO, S.; PYLYPENKO, V.; SOKIL, A. Tecnologia biométrica de reconhecimento pessoal. Revista on line de Política e Gestão Educacional, Araraquara, v. 28, n. 00, p. e023015, 2024. DOI: 10.22633/rpge.v28i00.19390. Disponível em: https://periodicos.fclar.unesp.br/rpge/article/view/19390. Acesso em: 21 nov. 2024.

Edição

Seção

Relatos de Pesquisa

Artigos mais lidos pelo mesmo(s) autor(es)