Atualização da experiência intencional de alunos superdotados no processo de dominar conceitos geométricos: do suporte ao mecanismo de atividade

Autores

DOI:

https://doi.org/10.22633/rpge.v25i2.15449

Palavras-chave:

Ensino de geometria, Experiência intencional, Atividade mental, Ambiente educacional, Unidades de pensamento integral

Resumo

No mundo moderno, as habilidades intelectuais das pessoas se tornam um poderoso recurso de civilização. o desenvolvimento de alunos com superdotação intelectual deve ser o foco da política educacional do estado. A opinião principal russa interpreta o fenômeno da superdotação como uma qualidade sistêmica que descreve a psique da criança como um todo. Tal abordagem prioriza a atualização e enriquecimento da experiência intencional de alunos superdotados durante o ensino de geometria. Ele pressupõe o desenvolvimento de um determinado estado subjetivo de orientação e seletividade da atividade cognitiva individual nas preferências, crenças. A análise de dados estatísticos confirma: a eficiência de atualizar a experiência intencional de alunos superdotados na forma de suas disposições individuais, crenças e avaliações emocionais enquanto resolve problemas geométricos durante competições acadêmicas é fornecida por atividades educacionais especificamente organizadas. Ele se correlaciona com o desenvolvimento da atividade mental durante o domínio dos métodos de atividade com conceitos geométricos.

Downloads

Não há dados estatísticos.

Biografia do Autor

Natalia Georgievna Podaeva, Bunin Yelets State University (BYSU), Yelets

Professor of Department of Mathematics and its Teaching Methodics.

Pavel Alexandrovich Agafonov, SBEI Secondary School No. 2070, Moscow

Mathematics teacher.

Referências

ARBAIN, N.; SHUKOR, N. A. The effects of GeoGebra on Students achievement. Procedia-Social and Behavioral Sciences, v. 172, p. 208-214, 2015.

ARNOLD, V. I. Hard and soft mathematical models. Moscow: Moscow Center for Continuing Mathematical Education, 2000.

BOGOMOLNY, A. The Fifth Postulate. Attempts to Prove. Cut the Knot, 2018 Available: https://www.cut-the-knot.org/triangle/pythpar/Attempts.shtml Access: 10 May 2021.

BOGOYAVLENSKAYA, D. B.; SHADRIKOV, V. D. The working concept of giftedness. Moscow: Magistr, 2003.

DALINGER, V. A. Methods of teaching the proof of mathematical propositions to students. Moscow: Prosveshchenie, 2006.

DAVYDOV, V. V. Psychological theory of educational activity and methods of primary education based on meaningful generalization. Tomsk: “Peleng” Publishing House, 1992.

DOBRENKOV, V. I. Society and education. Moscow: INFRA-M, 2003.

FRIEDMAN, L. M.; TURETSKY, E. How to learn to solve problems. Moscow: Prosveshchenie, 1989.

GALPERIN, P. Y. Methods of teaching and mental development. Moscow: Prosveshchenie, 1985.

GRUDENOV, Y. I. Psycho-didactic fundamentals of teaching mathematics methods. Moscow: Pedagogika, 1987.

KABANOVA-MELLER, E. N. Psychology of knowledge and skills formation in students. Moscow: APN RSFSR, 1962.

KAIVO-OJA, J.; ROTH, S. The Technological Future of Work and Robotics. Econstor, 2015. Available: http://hdl.handle.net/10419/118693 Access: 10 May 2021.

LEGENDRE, A. M. Elements of Geometry. Baltimore: Kelly & Piet Publishers, 1867. Available: https://archive.org/details/cu31924001166341/page/n5/mode/2up Access: May 10, 2021.

LERNER, I. Y. Methodological problems of the didactic theory of textbook construction. In LERNER, I. Y.; SHAKHMAEV, N. M. What should a textbook be: Didactic structuring principles Part 1. Moscow: Publishing House of the Russian Academy of Sciences, 1992. p. 7-26.

METELSKY, N. V. Didactics of mathematics. Minsk: Belarus State University Publishing, 1982.

PASANI, C. F. Analyzing Elementary School Students Geometry Comprehension Based on Van Hiele’s Theory. Journal of Southwest Jiaotong University, v. 54, n. 5, p. 1-11, 2019. Available: http://jsju.org/index.php/journal/article/view/389. Access: 10 May 2021.

PETER, R. The game with infinity. Moscow: Progress, 1968.

PIAGET, J. How children form mathematical concepts. Psychology Issues, v. 4, p. 121-126, 1966.

PIAGET, J. Selected psychological works. Psychology of intelligence. Moscow: Prosveshchenie, 1969.

PISAREVSKY, B. M.; KHARIN, V. T. Talks about mathematics and mathematicians. Moscow: Fizmatlit, 2004.

PODAEVA, N. G.; PODAEV, M. V. Updating the content of school mathematical education: a sociocultural approach. St. Petersburg: “Lan’” Publishing House, 2014.

PODAEVA, N. G.; PODAEV, M. V.; AGAFONOV, A. P. Formation of concepts in the process of teaching geometry to students in e-learning environment. “Concept” Scientific Methodical Electronic Journal, n. 6, p. 10-25, 2019. Available: http://e-koncept.ru/2019/191040.htm Access: 10 May 2021.

PODAEVA, N. G.; PODAEV, M. V.; AGAFONOV, P. A. The social and cultural approach to forming geometric concepts among schoolchildren. Amazonia Investiga, v. 8, n. 20, 2019. Available: https://amazoniainvestiga.info/index.php/amazonia/article/view/175 Access: 10May 2021.

POINCARE, A. About science. Moscow: Nauka, 1983.

POINCARÉ, H.; HADAMARD, J. An essay on the psychology of invention in the mathematical field. Princeton: Princeton University Press, 1949.

POYA, D. Mathematics and plausible reasoning. Moscow: Nauka, 1975.

ROTENBERG. V. S. “I image” and behaviour. Tel Aviv, 2001.

ROTENBERG. V. S.; BONDARENKO, S. M. Brain. Training. Health: Teacher’s book. Moscow: Prosveshchenie, 1989.

RUBINSTEIN, S. L. Fundamentals of general psychology. St. Petersburg: “Peter” Publishing House, 1999.

SARANTSEV, G. I. Goals of teaching mathematics in secondary school in modern conditions. Mathematics at school, n. 6. p. 36-41, 1999.

SHARYGIN, I. F. Does the school of the XXI century need geometry? Mathematics at school, n. 4, p. 72-79, 2004.

SHCHEDROVITSKY, G. P. Processes and structures in thinking (a course of lectures). From the archive of G. P. Shchedrovitsky. Moscow, 2003. v. 6.

SHIRSHOV, I. E. Personality – Freedom – Creativity. In: Humanization of education process: personal motive and creative development. Report theses of scientific conference in Bobruisk, March 29-30 2001. Minsk: Belarus State Economic University Publishing, 2001.

SLEPKAN, Z. I. Psychological and pedagogical foundations of teaching mathematics. Kiev: Radianska shkola, 1983.

SOROKIN, P. A. Social and Cultural Dynamics. Volume IV: Basic Problems, Principles, and Methods. New York: Bedminster Press, 1941.

STEPIN, V. S. On the philosophical foundations of synergetics. Synergetic paradigm. Synergetics of education. Moscow: Progress-tradition, 2007. p. 97-102.

TAKACI, D.; STANKOV, G.; MILANOVIC, I. Efficiency of learning environment using GeoGebra when calculus contents are learned in collaborative groups. Computers & Education, v. 82, p. 421-431, 2015.

THAMBI, N.; EU, L. K. 2013 Effect of students’ achievement in fractions using GeoGebra. SAINSAB, v. 16, p. 97-106.

TOLMAN, E. C.; BRUNSWIK, E. The organism and the causal texture of the environment. Psychological Review, v. 42, n. 1, p. 43–77, 1935.

USTILOVSKAYA, A. A. Psychological mechanisms of overcoming the symbolic naturalization of the ideal content of geometric concepts. Moscow: Scientific research institute of secondary education development Innovative strategies, 2008.

YAKIMANSKAYA, I. S. Psychological foundations of mathematical education. Moscow: Akademia, 2004.

ZAKARIA, E.; LEE, L. S. Teacher’s perceptions toward the use of GeoGebra in the teaching and learning of Mathematics. Journal of Mathematics and Statistics, v. 8, n. 2, p. 253-257, 2012.

ZEMLIAKOV, A. N. Psychodidactic aspects in-depth mathematics study in senior grades of secondary school. Mathematics. The First of September, n. 5, p. 8-10, 2005.

ZENGIN, Y.; FURKAN, H.; KUTLUCA, T. The effect of dynamic mathematics software GeoGebra on student achievement in teaching of trigonometry. Procedia: Social and Behavioral Sciences, v. 31, p. 183-187, 2012.

Publicado

01/08/2021

Como Citar

PODAEVA, N. G.; AGAFONOV, P. A. Atualização da experiência intencional de alunos superdotados no processo de dominar conceitos geométricos: do suporte ao mecanismo de atividade. Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. 2, p. 1311–1327, 2021. DOI: 10.22633/rpge.v25i2.15449. Disponível em: https://periodicos.fclar.unesp.br/rpge/article/view/15449. Acesso em: 25 out. 2021.