Dos algoritmos à responsabilidade

como estudantes de medicina autorregulam a aprendizagem na interseção entre direito e tecnologia

Autores

DOI:

https://doi.org/10.22633/rpge.v29iesp4.20776

Palavras-chave:

Aprendizagem autorregulada, Educação médica, Inteligência artificial, Saúde digital, Identidade profissional

Resumo

O estudo investiga como estudantes de medicina desenvolvem estratégias de aprendizagem autorregulada ao estudar dimensões legais e computacionais da prática médica em um contexto de crescente digitalização. Treze alunos participaram de entrevistas semiestruturadas, analisadas por meio da abordagem temática de Braun e Clarke. Três temas emergiram: planejamento algorítmico e previsão legal, depuração ética e raciocínio adaptativo, e conformidade reflexiva e responsabilidade profissional. Os estudantes inicialmente trataram o conteúdo como tarefa técnica, mas passaram a entendê-lo como um processo de autogoverno ético, aprendendo a planejar com responsabilidade moral, testar a validade de seus raciocínios e avaliar decisões segundo parâmetros de accountability. Os achados ampliam a teoria tradicional de aprendizagem autorregulada ao mostrar que a metacognição pode evoluir para um raciocínio ético diante de conteúdos interdisciplinares. Integrar a autorregulação às disciplinas de tecnologia e direito pode formar profissionais mais reflexivos, responsáveis e preparados para a prática médica orientada por dados.

Downloads

Não há dados estatísticos.

Biografia do Autor

Omar Alobud, Universidade King Saud bin Abdulaziz de Ciências da Saúde

Professor Assistente, Universidade King Saud bin Abdulaziz de Ciências da Saúde, Centro Internacional de Pesquisa Médica King Abdullah (KAIMRC). Ministério da Guarda Nacional - Assuntos de Saúde, Arábia Saudita.

Referências

Artino, A. R., La Rochelle, J. S., & Durning, S. J. (2010). Second-year medical students’ motivational beliefs, emotions, and achievement. Medical Education, 44(12), 1203–1212. https://doi.org/10.1111/j.1365-2923.2010.03712.x

Car, J., Ong, Q. C., & Erlikh Fox, T. (2025). The Digital Health Competencies in Medical Education Framework: An international consensus statement based on a Delphi study. JAMA Network Open, 8(1), e2453131. https://doi.org/10.1001/jamanetworkopen.2024.53131

Cho, K. K., Marjadi, B., Langendyk, V., & Hu, W. (2017). The self-regulated learning of medical students in the clinical environment: A scoping review. BMC Medical Education, 17(112). https://doi.org/10.1186/s12909-017-0956-6

Chou, C. L., Kalet, A., Costa, M. J., Cleland, J., & Winston, K. (2019). The dos, don’ts and don’t knows of remediation in medical education. Perspectives on Medical Education, 8(6), 322–338. https://doi.org/10.1007/s40037-019-00542-0

Durning, S. J., Cleary, T. J., Sandars, J., Hemmer, P., Kokotailo, P., & Artino, A. R. (2011). Viewing “strugglers” through a different lens: How a self-regulated learning perspective can help medical educators with assessment and remediation. Academic Medicine, 86(4), 488–495. https://doi.org/10.1097/ACM.0b013e31820dc384

Foong, C. C., Ghouse, N. L. B., Lye, A. J., Holder, N. A. K. A., Pallath, V., Hong, W.-H., Sim, J. H., & Vadivelu, J. (2021). A qualitative study on self-regulated learning among high-performing medical students. BMC Medical Education, 21(320). https://doi.org/10.1186/s12909-021-02712-w

Foong, C. C., Nazri, N. N. N., & Holder, N. A. K. A. (2018). I am becoming a doctor: Mine or someone else’s will? A qualitative investigation. EURASIA Journal of Mathematics, Science and Technology Education, 14(7), 3253–3267. https://doi.org/10.29333/ejmste/91084

Gupta, N., Ali, K., Jiang, D., Fink, T., & Du, X. (2024). Beyond autonomy: Unpacking self-regulated and self-directed learning through the lens of learner agency: A scoping review. BMC Medical Education, 24, 1519. https://doi.org/10.1186/s12909-024-06476-x

Hays, R. (2013). Integration in medical education: What do we mean? Education for Primary Care, 24(3), 151–152. https://doi.org/10.1080/14739879.2013.11494006

Huang, J., Huang, C., Qin, J., & Huang, K. (2024). Factors influencing self-regulated learning ability among medical undergraduates in China: A cross-sectional study. BMC Medical Education, 24, 1235. https://doi.org/10.1186/s12909-024-06254-9

Jouhari, Z., Haghani, F., & Changiz, T. (2015). Factors affecting self-regulated learning in medical students: A qualitative study. Medical Education Online, 20(1), 28694. https://doi.org/10.3402/meo.v20.28694

Koh, S., & Townsend, J. (2024). Teaching self-regulated learning through reflective writing: Experiences of first-year medical students with the Master Adaptive Learner model. Cureus, 16(10), e72664. https://doi.org/10.7759/cureus.72664

Lee, S. S., Samarasekera, D. D., Sim, J. H., Hong, W.-H., Foong, C. C., & Pallath, V. (2019). Exploring the cultivation of self-regulated learning strategies among pre-clinical medical students in two medical schools. Medical Science Educator, 29, 1–10. https://doi.org/10.1007/s40670-018-00666-9

Lucieer, S. M., Jonker, L., Visscher, C., Rikers, R. M., & Themmen, A. P. N. (2016). Self-regulated learning and academic performance in medical education. Medical Teacher, 38(6), 585–593. https://doi.org/10.3109/0142159X.2016.1142501

Marsilio, M., Calcaterra, V., Infante, G., Pisarra, M., & Zuccotti, G. (2024). The digital readiness of future physicians: Nurturing the post-pandemic medical education. BMC Health Services Research, 24(1), 885. https://doi.org/10.1186/s12913-024-11365-6

Panadero, E., & Alonso-Tapia, J. (2014). How do students self-regulate? Review of Zimmerman’s cyclical model of self-regulated learning. Anales de Psicología, 30(2), 450–462. https://doi.org/10.6018/analesps.30.2.167221

Pintrich, P. R. (2002). The role of metacognitive knowledge in learning, teaching, and assessing. Theory Into Practice, 41(4), 219–225. https://doi.org/10.1207/s15430421tip4104_3

Sandars, J. (2010). Pause 2 Learn: Developing self-regulated learning. Medical Education, 44(11), 1122–1123. https://doi.org/10.1111/j.1365-2923.2010.03885.x

Sandars, J., & Cleary, T. J. (2011). Self-regulation theory: Applications to medical education: AMEE guide No. 58. Medical Teacher, 33(11), 875–886. https://doi.org/10.3109/0142159X.2011.595434

Wilson, I., Cowin, L. S., Johnson, M., & Young, H. (2013). Professional identity in medical students: Pedagogical challenges to medical education. Teaching and Learning in Medicine, 25(4), 369–373. https://doi.org/10.1080/10401334.2013.827968

Wong, A., & Trollope-Kumar, K. (2014). Reflections: An inquiry into medical students’ professional identity formation. Medical Education, 48(5), 489–501. https://doi.org/10.1111/medu.12384

Zheng, B., & Sun, T. (2025). Self-regulated learning and learning outcomes in undergraduate and graduate medical education: A meta-analysis. Evaluation & the Health Professions, 48(4), 430–450. https://doi.org/10.1177/01632787241288849

Zimmerman, B. J. (1986). Becoming a self-regulated learner: Which are the key subprocesses? Contemporary Educational Psychology, 11(4), 307–313. https://doi.org/10.1016/0361-476X(86)90027-5

Zimmerman, B. J., & Moylan, A. R. (2009). Self-regulation: Where metacognition and motivation intersect. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 299–315). Routledge.

Publicado

20/12/2025

Como Citar

Alobud, O. (2025). Dos algoritmos à responsabilidade: como estudantes de medicina autorregulam a aprendizagem na interseção entre direito e tecnologia. Revista on Line De Política E Gestão Educacional, 29(esp4), e025105. https://doi.org/10.22633/rpge.v29iesp4.20776