El impacto de las tecnologías de educación stem innovadoras en la calidad del aprendizaje del material educativo

Autores/as

DOI:

https://doi.org/10.22633/rpge.v25iesp.5.16018

Palabras clave:

Aprendizaje STEM, Tecnologías STEM, Entorno STEM, Enfoque STEM, Física, Trabajo de laboratorio, Conceptos científicos

Resumen

La peculiaridad de la formación profesionalmente orientada de los aspirantes a la educación superior basada en tecnologías STEM es la necesidad de tener en cuenta las conexiones interdisciplinarias como manifestación de procesos integradores de penetración de disciplinas fundamentales (física), conocimientos naturales y matemáticos en el ciclo de asignaturas de la profesión. Formación orientada al alumnado, que se proporciona no solo por las competencias básicas físicas, matemáticas y técnicas del siglo XXI sino también por conocimientos metodológicos clave teniendo en cuenta aspectos aplicados. Estas conexiones desempeñan un papel fundamental en la mejora de la calidad de la formación profesional de los futuros especialistas. El propósito del artículo es determinar el impacto de las tecnologías innovadoras de la educación STEM en la calidad del aprendizaje del material educativo a través de un experimento físico. El artículo corrobora experimentalmente la efectividad de utilizar el enfoque STEM al realizar el trabajo de laboratorio para formar los conceptos físicos estudiados en comparación con los métodos de enseñanza tradicionales. Se ha demostrado que el uso del enfoque STEM mejora el nivel de asimilación de conceptos en comparación con los métodos de enseñanza tradicionales. En el caso de utilizar el enfoque STEM, el número de estudiantes con un alto nivel de asimilación de conceptos aumenta significativamente, mientras que el número de estudiantes con un nivel bajo disminuye, lo que demuestra la efectividad de usar el enfoque STEM para la formación de alto nivel. nivel de conocimientos y habilidades. El artículo destaca las características de la formación del componente STEM en la docencia en el entorno educativo y científico innovador de la universidad técnica, así como las características de la metodología de enseñanza teniendo en cuenta las tecnologías de aprendizaje STEM. Se ha concluido que el uso del enfoque STEM mejora significativamente el nivel de asimilación de conceptos físicos en comparación con los métodos de enseñanza tradicionales.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Yulia Alexandrovna Grunina, Peoples’ Frindship University of Russia (RUDN University), Moscow – Russia

Senior Lecturer.

Aksinia Avenirovna Malenkova, Peoples’ Frindship University of Russia (RUDN University), Moscow – Russia

Senior Lecturer.

Sergey Kurbanovich Gasanbekov, Moscow Polytechnic University, Moscow – Russia

Assistant Professor.

Elena Gennadievna Maslennikova, Russian State University of Tourism and Service, Cherkizovo, Moscow region – Russia

Assistant Professor.

Nina Ivanovna Solovyanenko, Institute of State and Law of The Russian Academy of Sciences, Moscow – Russia

Senior Researcher.

Citas

BASHAM, J. D.; ISRAEL, M.; MAYNARD, K. An ecological model of STEM education: Operationalizing STEM for all. Journal of Special Education Technology, v. 25, n. 3, p. 9-19, 2010.

BECKER, K.; PARK, K. Effects of integrative approaches among science, technology, engineering, and mathematics (STEM) subjects on students' learning: A preliminary meta-analysis. Journal of STEM Education: Innovations and Research, v. 12, n. 5/6, p. 23-37, 2011.

BLACKLEY, S.; HOWELL, J. A STEM narrative: 15 years in the making. Australian Journal of Teacher Education, v. 40, n. 7, p. 102–112, 2015.

BREINER, J. M. et al. What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, v. 112, n. 1, p. 3-11. 2012.

BROWN, R. et al. Understanding STEM: Current perceptions. Technology and Engineering Teacher, v. 70, n. 6, p. 5-9, 2011.

DALGARNO, B. et al. Effectiveness of a Virtual Laboratory as a preparatory resource for Distance Education chemistry students. Computers & Education, v. 53, p. 853-865. 2009. DOI: 10.1016/j.compedu.2009.05.005.

DECOITO, I. STEM education in Canada: A knowledge synthesis. Canadian Journal of Science, Mathematics and Technology Education, v. 16, n. 2, p. 114-128, 2016.

ENGLISH, L. D. STEM education K-12: Perspectives on integration. International Journal of STEM Education, v. 3, n. 3, 2016. DOI: 10.1186/s4059%204-016-0036-1

ENGLISH, L. D.; KING, D. T. STEM learning through engineering design: fourth-grade students’ investigations in aerospace. International Journal of STEM Education, v. 2, n. 14, 2015. DOI: 10.1186/s40594-015-0027-7

ERDOGAN, N. et al. Viewing how STEM projects-based learning influences students’ science achievement through the implementation lens: A latent growth modeling. Eurasia Journal of Mathematics, Science and Technology Education, v. 12, n. 8, p. 2139-2154, 2016.

ERDURAN, S.; OZDEM, Y.; PARK, J.-Y. Research trends on argumentation in science education: A journal content analysis from 1998-2014. International Journal of STEM Education, v. 2, n. 5, 2015. DOI: 10.1186/s40594-015-0020-1

FREEMAN, B.; MARGINSON, S.; TYTLER, R. (Ed). Widening and deepening the STEM effect. In: The age of STEM. Oxon: Routledge, 2015. p. 23-43.

FREEMAN, S. et al. Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, v. 111, n. 23, p. 8410-8415, 2015.

HAN, S. et al. In-service teachers' implementation and understanding of STEM project-based learning. Eurasia Journal of Mathematics, Science and Technology Education, v. 11, n. 1, p. 63-76, 2015.

HERNANDEZ, P. R. et al. Connecting the STEM dots: Measuring the effect of an integrated engineering design intervention. International Journal of Technology and Design Education, v. 24, n. 1, p. 107-120, 2014.

KNEZEK, G.; CHRISTENSEN, R.; TYLER-WOOD, T. Contrasting perceptions of STEM content and careers. Contemporary Issues in Technology and Teacher Education, v. 11, n. 1, p. 92-117, 2011.

LI, Y. Journal for STEM education research - promoting the development of interdisciplinary research in STEM education. Journal for STEM Education Research, v. 1, n. 1-2, p. 1-6, 2018.

LI, Y.; SCHOENFELD, A. H. Problematizing teaching and learning mathematics as 'given' in STEM education. International Journal of STEM Education, v. 6, n. 44, 2019. DOI: 10.1186/s40594-019-0197-9

LOGACHEV, M. S. et al. Information System for Monitoring and Managing the Quality of Educational Programs. Journal of Open Innovation: Technology, Market, and Complexity, v. 7, n. 1, p. 93, 2021. DOI: 10.3390/joitmc7010093

MALTESE, A. V. et al. STEM and STEM education in the United States. In: FREEMAN, B.; MARGINSON, S.; TYTLER, R. (eds.). The age of STEM. Oxon: Routledge, 2015. p. 102-133.

MARGOT, K. C.; KETTLER, T. Teachers' perception of STEM integration and education: A systematic literature review. International Journal of STEM Education, v. 6, n. 2, 2019. DOI: 10.1186/s40594-018-0151-2

MEYRICK, K. M. How STEM education improves student learning. Meridian K-12. School Computer Technologies Journal, v. 14, n. 1, p. 1-6, 2011.

MOORE, T. J.; SMITH, K. A. Advancing the state of the art of STEM integration. Journal of STEM Education, v. 15, n. 1, p. 5–10, 2014.

PETERS-BURTON, E. et al. Inclusive STEM high school design: 10 critical components. Theory Into Practice, v. 53, n. 1, p. 67-71, 2014.

SAMPURNO, P. J.; SARI, Y. A.; WIJAYA, A. D. Integrating STEM (Science, Technology, Engineering, Mathematics) and Disaster (STEM-D) education for building students’ disaster literacy. International Journal of Learning and Teaching, v. 1, n. 1, p. 73–76, 2015.

SHEFFIELDA, R. et al. Transnational Examination of STEM Education. International Journal of Innovation in Science and Mathematics Education, v. 26, n. 8, p. 67-80, 2018.

SPELT, E. J. H. et al. Teaching and learning in interdisciplinary higher education: A systematic review. Educational Psychology Review, v. 21, p. 365- 378, 2009.

STOHLMANN, M.; MOORE, T.; ROEHRIG, G. Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research, v. 2, n. 1, p. 28-34, 2012.

TÜRK, N.; KALAYC, N.; YAMAK, H. New Trends in Higher Education in the Globalizing World: STEM in Teacher Education. Universal Journal of Educational Research, v. 6, n. 6, p. 1286-1304, 2018.

VINICHENKO, M. V. et al. The Effect of Digital Economy and Artificial Intelligence on The Participants of The School Educational Process. Propósitos y Representaciones, v. 8, n. SPE2, e694, 2020. DOI: 10.20511/pyr2020.v8nSPE2.694

WANG, H-H. et al. STEM integration: Teacher perceptions and practice. Journal of Pre-College Engineering Education Research, v. 1, n. 2, p. 1-13, 2011.

WHITE, D. W. What is STEM education and why is it important? Florida Association of Teacher Educators Journal, v. 1, n. 14, p. 1-8, 2014.

WILLIAMS, J. STEM education: Proceed with caution. Design and Technology Education, v. 16, n. 1, p. 26-35, 2011.

Publicado

30/12/2021

Cómo citar

GRUNINA, Y. A.; MALENKOVA, A. A.; GASANBEKOV, S. K.; MASLENNIKOVA, E. G.; SOLOVYANENKO, N. I. El impacto de las tecnologías de educación stem innovadoras en la calidad del aprendizaje del material educativo. Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. esp. 5, p. 3306–3321, 2021. DOI: 10.22633/rpge.v25iesp.5.16018. Disponível em: https://periodicos.fclar.unesp.br/rpge/article/view/16018. Acesso em: 30 jun. 2024.

Número

Sección

Artigos

Artículos más leídos del mismo autor/a