Animações de química baseadas em personagens para aumentar o interesse dos alunos

design, implementação e avaliação por meio de métodos mistos

Autores

DOI:

https://doi.org/10.22633/rpge.v29iesp4.20768

Palavras-chave:

Vídeos animados, Ensino de química, Tecnología educacional, Design instrucional, Interesse situacional

Resumo

O declínio do interesse dos alunos pela Química representa um desafio para o ensino de ciências, frequentemente associado à natureza abstrata e exigente da disciplina. Este estudo concebeu e avaliou vídeos animados com personagens para promover o engajamento na aprendizagem de Química. Trinta animações foram desenvolvidas para sete unidades do currículo do 10º ano do ensino fundamental no Vietnã. Dependendo dos objetivos de aprendizagem, cada tema compreendia um ou mais pares de vídeos complementares, seguindo uma estrutura dupla: vídeos que apresentavam problemas contextualizados da vida real e vídeos explicativos que visualizavam processos em nível molecular. A pesquisa adotou uma metodologia mista, envolvendo 57 professores de Química e 137 alunos no Vietnã. Os dados quantitativos foram analisados por meio de estatística descritiva e testes de Kruskal-Wallis, enquanto a análise temática foi aplicada às respostas qualitativas. Tanto professores quanto alunos avaliaram os vídeos positivamente em termos de clareza, valor pedagógico e apelo emocional. A narrativa centrada nos personagens aumentou a curiosidade e sustentou a atenção, enquanto o design com dois vídeos apoiou efetivamente a aprendizagem baseada em investigação.

Downloads

Não há dados estatísticos.

Biografia do Autor

Trang Nguyen Thi Thuy, Universidade de Hue

Universidade de Educação, Universidade de Hue (HUEdU), Hue – Vietnã. Professor, departamento de Educação em Química.

Referências

Adam, M., Chase, R. P., & McMahon, S. A. (2021). Design preferences for global scale: A mixed-methods study of “glocalization” of an animated, video-based health communication intervention. BMC Public Health, 21, 1–12. https://doi.org/10.1186/s12889-021-11043-w

Arumugam, S., & Nirmala, N. (2018). Science animation and students’ attitudes. In Encyclopedia of Information Science and Technology (4th ed., pp. 2599–2615). IGI Global. https://doi.org/10.4018/978-1-5225-2255-3.ch227

Barak, M., Ashkar, T., & Dori, Y. J. (2011). Learning science via animated movies: Its effect on students’ thinking and motivation. Computers & Education, 56(3), 839–846. https://doi.org/10.1016/j.compedu.2010.10.025

Barbara, F., Kramer, E., & Kim, J. A. (2016). Split‐attention and coherence principles in multimedia instruction can rescue performance for learners with lower working memory capacity. Applied Cognitive Psychology, 30(5), 691–699. https://doi.org/10.1002/acp.3244

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Brunyé, T. T., Taylor, H. A., & Rapp, D. N. (2008). Repetition and dual coding in procedural multimedia presentations. Applied Cognitive Psychology, 22(7), 877–895. https://doi.org/10.1002/acp.1396

Buchholtz, N. (2019). Planning and conducting mixed methods studies in mathematics educational research. In G. Kaiser & N. Presmeg (Eds.), Compendium for early career researchers in mathematics education (pp. 91–112). Springer. https://doi.org/10.1007/978-3-030-15636-7_6

Bülbül, A., & Kuzu, A. (2021). Emotional design of educational animations: Effects on emotion, learning, motivation and interest. Participatory Educational Research, 8(3), 344–355. https://doi.org/10.17275/PER.21.69.8.3

Chang, H., & Quintana, C. (2006). Student-generated animations: Supporting middle school students’ visualization, interpretation and reasoning of chemical phenomena. In Proceedings of the International Conference of the Learning Sciences (pp. 71–77).

Creswell, J. W., & Clark, V. L. P. (2017). Designing and conducting mixed methods research (3rd ed.). Sage Publications.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555

D’Mello, S., & Graesser, A. (2012). Dynamics of affective states during complex learning. Learning and Instruction, 22(1), 145–157. https://doi.org/10.1016/j.learninstruc.2011.10.001

De Jong, T. (2005). The guided discovery learning principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 215–229). Cambridge University Press.

Demissie, T., Ochonogo, C. E., & Engida, T. (2011). Pedagogy-based-technology and chemistry students’ performance in higher institutions: A case of Debre Berhan University. US-China Education Review, 5, 602–611.

Ekman, P., & Friesen, W. V. (1978). Facial action coding system (FACS) [Database record]. Consulting Psychologists Press. https://doi.org/10.1037/t27734-000

Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). Sage Publications.

Fyfield, M., Henderson, M., & Phillips, M. (2022). Improving instructional video design: A systematic review. Australasian Journal of Educational Technology, 38(3), 150–178. https://doi.org/10.14742/ajet.7296

Gagné, R. M., Wager, W. W., Golas, K. C., & Keller, J. M. (2005). Principles of instructional design (5th ed.). Wadsworth Publishing.

Hidi, S., & Renninger, A. (2006). The four-phase model of interest development. Educational Psychologist, 41(4), 111–127. https://doi.org/10.1207/s15326985ep4102_4

Hoa, Đ. T. H. (2015). Students’ attitude towards chemistry from the perspective of chemistry teachers. HCMUE Journal of Science, 6(72), 32–39.

Hunaepi, H., Suma, I. K., & Subagia, I. W. (2024). Curiosity in science learning: A systematic literature review. International Journal of Essential Competencies in Education, 3(1). https://doi.org/10.36312/ijece.v3i1.1918

Hùng, N. Q., & Linh, H. M. (2022). Integrating stories and mathematical games in teaching mathematics for 3rd and 4th grade. Dong Thap University Journal of Science, 11(4), 41–50. https://doi.org/10.52714/DTHU.11.4.2022.965

Liew, T. W., Zin, N. A. M., & Sahari, N. (2017). Exploring the affective, motivational and cognitive effects of pedagogical agent enthusiasm in a multimedia learning environment. Human-Centric Computing and Information Sciences, 7(9), 1–21. https://doi.org/10.1186/s13673-017-0089-2

Mayer, R. E. (2001). Multimedia learning. Cambridge University Press. https://doi.org/10.1017/CBO9781139164603

Mayer, R. E. (2009). Multimedia learning (2nd ed.). Cambridge University Press.

Mayer, R. E. (2014). Cognitive theory of multimedia learning. In The Cambridge handbook of multimedia learning (2nd ed., pp. 43–71). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.005

Mayer, R. E., & Fiorella, L. (2014). Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 279–315). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.015

Minh, T. H., & An, P. H. T. (2023). Principles and procedures for designing animated films to support teaching natural sciences grade 9. Vietnam Journal of Education, 23(7), 178–184.

Ministry of Education and Training. (2018). The 2018 Vietnam general education curriculum in chemistry.

Morehead, P. (2005). The continuing challenges of technology integration for teachers. Essays in Education, 15(1). https://openriver.winona.edu/eie/vol15/iss1/10

Moreno, R., & Mayer, R. E. (2007). Interactive multimodal learning environments. Educational Psychology Review, 19(3), 309–326. https://doi.org/10.1007/s10648-007-9047-2

Mou, T.-Y. (2023). Science learning with designed animation… International Journal of Educational Research Open, 4, 100246. https://doi.org/10.1016/j.ijedro.2023.100246

Paulhus, D. L. (1991). Measurement and control of response bias. In J. P. Robinson et al. (Eds.), Measures of personality and social psychological attitudes (pp. 17–59). Academic Press. https://doi.org/10.1016/B978-0-12-590241-0.50006-X

Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315–341. https://doi.org/10.1007/s10648-006-9029-9

Polikoff, M. S. (2013). Teacher education, experience, and the practice of aligned instruction. Journal of Teacher Education, 64(3), 212–225. https://doi.org/10.1177/0022487112472908

Renninger, K. A., & Hidi, S. (2011). Revisiting the conceptualization, measurement, and generation of interest. Educational Psychologist, 46(3), 168–184. https://doi.org/10.1080/00461520.2011.587723

Schiefele, H., Krapp, A., Prenzel, M., Heiland, A., & Kasten, H. (1983). Principles of an educational theory of interest. In Proceedings of the ISSBD.

Siegel, S., & Castellan, N. J. (1988). Nonparametric statistics for the behavioral sciences (2nd ed.). McGraw-Hill.

Swain, K. T. (2012). Meaningful use of animation and simulation in the science classroom [Master’s thesis]. http://digitalcommons.brockport.edu/ehd_theses/143

Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296. https://doi.org/10.1023/A:1022193728205

Teplá, M., Teplý, P., & Smejkal, P. (2022). Influence of 3D models and animations on students in natural subjects. International Journal of STEM Education, 9(1), 1–20. https://doi.org/10.1186/s40594-022-00382-8

Um, E. R., Plass, J. L., Hayward, E. O., & Homer, B. D. (2012). Emotional design in multimedia learning. Journal of Educational Psychology, 104(2), 485–498. https://doi.org/10.1037/a0026609

Urquiza-Fuentes, J., & Velázquez-Iturbide, J. (2013). Toward the effective use of educational program animations: The roles of student engagement and topic complexity. Computers & Education, 67, 178–192. https://doi.org/10.1016/j.compedu.2013.02.013

Vermaat, H., & Kramers-Pals, H. (2003). The use of animations in chemical education. In AECT Conference Proceedings.

Yaseen, Z. (2018). Using student-generated animations: The challenge of dynamic chemical models in states of matter and the invisibility of the particles. Chemistry Education Research and Practice, 19(4), 1166–1185. https://doi.org/10.1039/C8RP00109F

Yusuf, Y. (2017). Learning chemistry by ICT (virtual animation) at Maumere High School, East Nusa Tenggara. Journal of Education, Teaching and Learning, 2(1), 1–7. https://doi.org/10.26737/jetl.v2i1.138

Publicado

20/12/2025

Como Citar

Thuy, T. N. T. (2025). Animações de química baseadas em personagens para aumentar o interesse dos alunos: design, implementação e avaliação por meio de métodos mistos. Revista on Line De Política E Gestão Educacional, 29(esp4), e025099. https://doi.org/10.22633/rpge.v29iesp4.20768