Animaciones de química basadas en personajes para aumentar el interés del estudiantado

diseño, implementación y evaluación mediante métodos mixtos

Autores/as

DOI:

https://doi.org/10.22633/rpge.v29iesp4.20768

Palabras clave:

Videos animados, Enseñanza de la química, Tecnología educativa, Diseño instruccional, Interés situacional

Resumen

La disminución del interés del alumnado por la Química constituye un desafío para la enseñanza de las ciencias, frecuentemente associado al carácter abstracto y exigente de la disciplina. Este estudio diseñó y evaluó videos animados con personajes para promover el compromiso en el aprendizaje de Química. Se desarrollaron treinta animaciones para siete unidades del currículo de 10.º grado de la educación básica en Vietnam. Según los objetivos de aprendizaje, cada tema incluía uno o más pares de videos complementarios, siguiendo una estructura doble: videos que presentaban problemas contextualizados de la vida real y videos explicativos que visualizaban procesos a nivel molecular. La investigación adoptó un enfoque mixto, envolvendo 57 docentes de Química y 137 estudiantes en Vietnam. Los datos cuantitativos se analizaron mediante estadística descriptiva y pruebas de Kruskal-Wallis, mientras que el análisis temático se aplicó a las respuestas cualitativas. Tanto docentes como estudiantes evaluaron positivamente los videos en términos de claridad, valor pedagógico y atractivo emocional. La narrativa centrada en los personajes incrementó la curiosidad y mantuvo la atención, mientras que el diseño de dos videos apoyó de manera efectiva el aprendizaje basado en la indagación.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Trang Nguyen Thi Thuy, Hue University

University of Education, Hue University (HUEdU), Hue – Vietnam. Lecturer, Department of Chemistry Education.

Citas

Adam, M., Chase, R. P., & McMahon, S. A. (2021). Design preferences for global scale: A mixed-methods study of “glocalization” of an animated, video-based health communication intervention. BMC Public Health, 21, 1–12. https://doi.org/10.1186/s12889-021-11043-w

Arumugam, S., & Nirmala, N. (2018). Science animation and students’ attitudes. In Encyclopedia of Information Science and Technology (4th ed., pp. 2599–2615). IGI Global. https://doi.org/10.4018/978-1-5225-2255-3.ch227

Barak, M., Ashkar, T., & Dori, Y. J. (2011). Learning science via animated movies: Its effect on students’ thinking and motivation. Computers & Education, 56(3), 839–846. https://doi.org/10.1016/j.compedu.2010.10.025

Barbara, F., Kramer, E., & Kim, J. A. (2016). Split‐attention and coherence principles in multimedia instruction can rescue performance for learners with lower working memory capacity. Applied Cognitive Psychology, 30(5), 691–699. https://doi.org/10.1002/acp.3244

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Brunyé, T. T., Taylor, H. A., & Rapp, D. N. (2008). Repetition and dual coding in procedural multimedia presentations. Applied Cognitive Psychology, 22(7), 877–895. https://doi.org/10.1002/acp.1396

Buchholtz, N. (2019). Planning and conducting mixed methods studies in mathematics educational research. In G. Kaiser & N. Presmeg (Eds.), Compendium for early career researchers in mathematics education (pp. 91–112). Springer. https://doi.org/10.1007/978-3-030-15636-7_6

Bülbül, A., & Kuzu, A. (2021). Emotional design of educational animations: Effects on emotion, learning, motivation and interest. Participatory Educational Research, 8(3), 344–355. https://doi.org/10.17275/PER.21.69.8.3

Chang, H., & Quintana, C. (2006). Student-generated animations: Supporting middle school students’ visualization, interpretation and reasoning of chemical phenomena. In Proceedings of the International Conference of the Learning Sciences (pp. 71–77).

Creswell, J. W., & Clark, V. L. P. (2017). Designing and conducting mixed methods research (3rd ed.). Sage Publications.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555

D’Mello, S., & Graesser, A. (2012). Dynamics of affective states during complex learning. Learning and Instruction, 22(1), 145–157. https://doi.org/10.1016/j.learninstruc.2011.10.001

De Jong, T. (2005). The guided discovery learning principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 215–229). Cambridge University Press.

Demissie, T., Ochonogo, C. E., & Engida, T. (2011). Pedagogy-based-technology and chemistry students’ performance in higher institutions: A case of Debre Berhan University. US-China Education Review, 5, 602–611.

Ekman, P., & Friesen, W. V. (1978). Facial action coding system (FACS) [Database record]. Consulting Psychologists Press. https://doi.org/10.1037/t27734-000

Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). Sage Publications.

Fyfield, M., Henderson, M., & Phillips, M. (2022). Improving instructional video design: A systematic review. Australasian Journal of Educational Technology, 38(3), 150–178. https://doi.org/10.14742/ajet.7296

Gagné, R. M., Wager, W. W., Golas, K. C., & Keller, J. M. (2005). Principles of instructional design (5th ed.). Wadsworth Publishing.

Hidi, S., & Renninger, A. (2006). The four-phase model of interest development. Educational Psychologist, 41(4), 111–127. https://doi.org/10.1207/s15326985ep4102_4

Hoa, Đ. T. H. (2015). Students’ attitude towards chemistry from the perspective of chemistry teachers. HCMUE Journal of Science, 6(72), 32–39.

Hunaepi, H., Suma, I. K., & Subagia, I. W. (2024). Curiosity in science learning: A systematic literature review. International Journal of Essential Competencies in Education, 3(1). https://doi.org/10.36312/ijece.v3i1.1918

Hùng, N. Q., & Linh, H. M. (2022). Integrating stories and mathematical games in teaching mathematics for 3rd and 4th grade. Dong Thap University Journal of Science, 11(4), 41–50. https://doi.org/10.52714/DTHU.11.4.2022.965

Liew, T. W., Zin, N. A. M., & Sahari, N. (2017). Exploring the affective, motivational and cognitive effects of pedagogical agent enthusiasm in a multimedia learning environment. Human-Centric Computing and Information Sciences, 7(9), 1–21. https://doi.org/10.1186/s13673-017-0089-2

Mayer, R. E. (2001). Multimedia learning. Cambridge University Press. https://doi.org/10.1017/CBO9781139164603

Mayer, R. E. (2009). Multimedia learning (2nd ed.). Cambridge University Press.

Mayer, R. E. (2014). Cognitive theory of multimedia learning. In The Cambridge handbook of multimedia learning (2nd ed., pp. 43–71). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.005

Mayer, R. E., & Fiorella, L. (2014). Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 279–315). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.015

Minh, T. H., & An, P. H. T. (2023). Principles and procedures for designing animated films to support teaching natural sciences grade 9. Vietnam Journal of Education, 23(7), 178–184.

Ministry of Education and Training. (2018). The 2018 Vietnam general education curriculum in chemistry.

Morehead, P. (2005). The continuing challenges of technology integration for teachers. Essays in Education, 15(1). https://openriver.winona.edu/eie/vol15/iss1/10

Moreno, R., & Mayer, R. E. (2007). Interactive multimodal learning environments. Educational Psychology Review, 19(3), 309–326. https://doi.org/10.1007/s10648-007-9047-2

Mou, T.-Y. (2023). Science learning with designed animation… International Journal of Educational Research Open, 4, 100246. https://doi.org/10.1016/j.ijedro.2023.100246

Paulhus, D. L. (1991). Measurement and control of response bias. In J. P. Robinson et al. (Eds.), Measures of personality and social psychological attitudes (pp. 17–59). Academic Press. https://doi.org/10.1016/B978-0-12-590241-0.50006-X

Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315–341. https://doi.org/10.1007/s10648-006-9029-9

Polikoff, M. S. (2013). Teacher education, experience, and the practice of aligned instruction. Journal of Teacher Education, 64(3), 212–225. https://doi.org/10.1177/0022487112472908

Renninger, K. A., & Hidi, S. (2011). Revisiting the conceptualization, measurement, and generation of interest. Educational Psychologist, 46(3), 168–184. https://doi.org/10.1080/00461520.2011.587723

Schiefele, H., Krapp, A., Prenzel, M., Heiland, A., & Kasten, H. (1983). Principles of an educational theory of interest. In Proceedings of the ISSBD.

Siegel, S., & Castellan, N. J. (1988). Nonparametric statistics for the behavioral sciences (2nd ed.). McGraw-Hill.

Swain, K. T. (2012). Meaningful use of animation and simulation in the science classroom [Master’s thesis]. http://digitalcommons.brockport.edu/ehd_theses/143

Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296. https://doi.org/10.1023/A:1022193728205

Teplá, M., Teplý, P., & Smejkal, P. (2022). Influence of 3D models and animations on students in natural subjects. International Journal of STEM Education, 9(1), 1–20. https://doi.org/10.1186/s40594-022-00382-8

Um, E. R., Plass, J. L., Hayward, E. O., & Homer, B. D. (2012). Emotional design in multimedia learning. Journal of Educational Psychology, 104(2), 485–498. https://doi.org/10.1037/a0026609

Urquiza-Fuentes, J., & Velázquez-Iturbide, J. (2013). Toward the effective use of educational program animations: The roles of student engagement and topic complexity. Computers & Education, 67, 178–192. https://doi.org/10.1016/j.compedu.2013.02.013

Vermaat, H., & Kramers-Pals, H. (2003). The use of animations in chemical education. In AECT Conference Proceedings.

Yaseen, Z. (2018). Using student-generated animations: The challenge of dynamic chemical models in states of matter and the invisibility of the particles. Chemistry Education Research and Practice, 19(4), 1166–1185. https://doi.org/10.1039/C8RP00109F

Yusuf, Y. (2017). Learning chemistry by ICT (virtual animation) at Maumere High School, East Nusa Tenggara. Journal of Education, Teaching and Learning, 2(1), 1–7. https://doi.org/10.26737/jetl.v2i1.138

Publicado

20/12/2025

Cómo citar

Thuy, T. N. T. (2025). Animaciones de química basadas en personajes para aumentar el interés del estudiantado: diseño, implementación y evaluación mediante métodos mixtos. Revista on Line De Política E Gestão Educacional, 29(esp4), e025099. https://doi.org/10.22633/rpge.v29iesp4.20768