Tendencias transformadoras en la enseñanza superior en el contexto de la digitalización

el caso de las tecnologías de inteligencia artificial

Autores/as

DOI:

https://doi.org/10.22633/rpge.v29i00.20815

Palabras clave:

Enseñanza superior, Digitalización, Inteligencia artificial (IA), ChatGPT, IA Generativa

Resumen

El propósito de este estudio es corroborar las tendencias transformadoras de la enseñanza superior en el contexto de la digitalización utilizando como ejemplo las tecnologías de inteligencia artificial (IA). Mediante encuestas a expertos, el artículo identifica los modelos educativos que surgen del uso de la IA en la enseñanza superior y esboza los retos clave que acompañan a la integración de la IA en los entornos académicos. Entre los problemas más acuciantes figuran la defensa de la integridad académica, la privacidad y seguridad de los datos, las preocupaciones éticas relacionadas con la propiedad intelectual y la difusión involuntaria de información errónea. Los autores proponen estrategias para afrontar estos retos. Llegan a la conclusión de que la integración de la IA en la enseñanza superior servirá de catalizador para transformaciones significativas, actuando a la vez como una herramienta educativa innovadora y una disciplina académica cada vez más importante, configurando el futuro de la enseñanza superior, donde la coexistencia armoniosa de la inteligencia humana y la inteligencia artificial abrirá nuevos horizontes para la adquisición y difusión de conocimientos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Gulyusa Ismagilova, Kazan (Volga Region) Federal University

Kazan (Volga Region) Federal University, Kazan – Russia. Ph.D., Associate Professor at the Department of Contrastive Linguistics.

Leisan Miftakhova, Kazan Federal University

Kazan (Volga Region) Federal University, Kazan – Russia. Assistant Lecturer at the Department of Contrastive Linguistics.

Irina Kurmaeva, Kazan Federal University

Kazan (Volga Region) Federal University, Kazan – Russia. Ph.D., Associate Professor at the Department of Contrastive Linguistics.

Grigoriy Bazhin, Moscow State University of civil Engineering

Moscow State University of civil Engineering, Moscow – Russia. Senior Lecturer.

Anatolii Shapovalov, Kuban State Agrarian University named after I.T. Trubilin

Kuban State Agrarian University named after I.T. Trubilin, Krasnodar – Russia. PhD, Associate professor at the Department of theory and history of state and law.

Gennadiy Kuzmitskiy, Perm Military Institute of the National Guard Troops

Perm Military Institute of the National Guard Troops, Perm – Russia. Doctor, Doctor of Technical Sciences, Academician of the Russian Academy of Natural Sciences.

Darya Gvozdeva, Southern Federal University

Southern Federal University, Academy of Psychology and Pedagogy – Russia. Candidate of Psychological Sciences, Associate Professor at the Department of Personality Psychology and Counseling Psychology.

Citas

Ali, J. K. M., Shamsan, M. A. A., Hezam, T. A., & Mohammed, A. A. (2023). Impact of ChatGPT on learning motivation: Teachers and students’ voices. Journal of English Studies in Arabia Felix, 2(1), 41–49. https://doi.org/10.56540/jesaf.v2i1.51

Baker, R. (2016). Stupid tutoring systems, intelligent humans. International Journal of Artificial Intelligence in Education, 26(2), 600–614.

Bialik, M., Holmes, W., & Feidel, C. (2022). Artificial intelligence in education. Alpina PRO.

Castrillón, O., Sarache, W., & Ruiz, S. (2020). Prediction of academic performance using artificial intelligence techniques. Formación Universitaria, 13(1), 93–102.

Chang, C.-Y., Kuo, S.-Y., & Hwang, G.-H. (2022). Chatbot-facilitated nursing education: Incorporating a knowledge-based chatbot system into a nursing training program. Educational Technology & Society, 25(1), 15–27.

Chen, X., Zou, D., Xie, H., Cheng, G., & Liu, C. (2022). Two decades of artificial intelligence in education: Contributors, collaborations, research topics, challenges, and future directions. Educational Technology & Society, 25(1), 28–47.

Crompton, H., Edmett, A., Ichaporia, N., & Burke, D. (2024). AI and English language teaching: Affordances and challenges. British Journal of Educational Technology, 55(6), 2503–2529. https://doi.org/10.1111/bjet.13460

Denning, P. J., & Denning, D. E. (2020). Dilemmas of artificial intelligence. Communications of the ACM, 63(3), 22–24. https://doi.org/10.1145/3379920

Floridi, L., & Chiriatti, M. (2020). GPT-3: Its nature, scope, limits, and consequences. Minds and Machines, 30(4), 681–694. https://doi.org/10.1007/s11023-020-09548-1

Garkusha, N. S., & Gorodova, Y. S. (2023). Pedagogical opportunities of ChatGPT for the development of students’ cognitive activity. Professional Education and Labor Market, 11(1), 6–23. https://doi.org/10.52944/PORT.2023.52.1.001

Humble, N., & Mozelius, P. (2022). The threat, hype, and promise of artificial intelligence in education. Discover Artificial Intelligence, 2(1). https://doi.org/10.1007/s44163-022-00039-z

Hussin, A. A. (2018). Education 4.0 made simple: Ideas for teaching. International Journal of Education & Literacy Studies, 6(3), 92–98. https://doi.org/10.7575/aiac.ijels.v.6n.3p.92

Ivakhnenko, E. N., & Nikolsky, V. S. (2023). ChatGPT in higher education and science: Threat or valuable resource? Higher Education in Russia, (4), 9–22.

Kooli, C. (2023). Chatbots in education and research: A critical examination of ethical implications and solutions. Sustainability, 15(7). https://doi.org/10.3390/su15075614

Lund, B., Wang, T., Manuru, N. R., Nie, B., Shimray, S., & Wang, Z. (2023). ChatGPT and a new academic reality: AI-written research papers and the ethics of the large language models in scholarly publishing. Journal of the Association for Information Science and Technology, 74(5), 570–581. https://doi.org/10.1002/asi.24750

Makridakis, S. (2017). The forthcoming artificial intelligence revolution: Its impact on society and firms. Futures, 90, 46–60.

Natale, S., & Ballatore, A. (2020). Imagining the thinking machine: Technological myths and the rise of artificial intelligence. Convergence, 26(1), 3–18.

Nze, S. U. (2024). AI-powered chatbots. Global Journal of Human Resource Management, 12(6), 34–45.

Pearlman, E. (2020). AI comes of age. PAJ: A Journal of Performance and Art, 42(3), 55–62.

Perrotta, C., & Selwyn, N. (2020). Deep learning goes to school: Toward a relational understanding of AI in education. Learning, Media and Technology, 45, 251–269.

Pesonen, J. A. (2021). “Are you OK?” Students’ trust in a chatbot providing support opportunities. In P. Zaphiris & A. Ioannou (Eds.), Learning and collaboration technologies: Games and virtual environments for learning (pp. 199–215). Springer. https://doi.org/10.1007/978-3-030-77943-6_13

Przegalinska, A., Ciechanowski, L., Stroz, A., Gloor, P., & Mazurek, G. (2019). In bot we trust: A new methodology of chatbot performance measures. Business Horizons, 62(6), 785–797. https://doi.org/10.1016/j.bushor.2019.08.005

Rincon-Flores, E. G., López-Camacho, E., Mena, J., & López, O. O. (2020). Predicting academic performance with artificial intelligence (AI): A new tool for teachers and students. In 2020 IEEE Global Engineering Education Conference (EDUCON) (pp. 1049–1054). IEEE. https://doi.org/10.1109/EDUCON45650.2020.9125141

Sorokin, D. O. (2023). Attitudes of school pupils and university students towards the use of AI chatbots in education. Derzhavinsky Forum, 7(1), 21–30.

Publicado

23/12/2025

Cómo citar

Ismagilova, G., Miftakhova, L., Kurmaeva, I., Bazhin, G., Shapovalov, A., Kuzmitskiy, G., & Gvozdeva, D. (2025). Tendencias transformadoras en la enseñanza superior en el contexto de la digitalización: el caso de las tecnologías de inteligencia artificial. Revista on Line De Política E Gestão Educacional, 29(00), e025114. https://doi.org/10.22633/rpge.v29i00.20815

Número

Sección

Ensaios e Comunicação Cien´tifica