Aplicación de sistemas de traducción automática mediante herramientas de inteligencia artificial para la formación de estudiantes universitarios en traducción escrita

Autores/as

DOI:

https://doi.org/10.22633/rpge.v29i00.20793

Palabras clave:

Traducción automática (MT), Traducción automatizada (AT), Sistema CAT, Inteligencia artificial (IA), Formación en traducción

Resumen

Este artículo examina las características y perspectivas del uso de herramientas de inteligencia artificial (IA) en la traducción escrita y la formación en traducción en instituciones de enseñanza superior. El estudio pretende ofrecer una justificación teórica y práctica de las tendencias modernas en el desarrollo de la tecnología de IA dentro de las actividades de traducción. El artículo identifica los requisitos previos para la aplicación de la tecnología de IA y presenta un análisis comparativo de las herramientas de IA en la traducción escrita. Mediante un estudio comparativo, se describen las características de los sistemas de traducción automática (TAO) en la traducción escrita: Trados, SmartCAT y MemoQ. El estudio analizó indicadores de los sistemas TAO como las capacidades funcionales, la disponibilidad del software para su instalación, la facilidad de uso para principiantes o estudiantes de traducción y la claridad de la interfaz de usuario. El análisis comparativo de sistemas TAO como Trados, SmartCAT y MemoQ demostró que los estudiantes de traducción deberían utilizar estas herramientas en la traducción escrita sólo después de dominar las habilidades básicas de programas más fáciles de usar, en particular el sistema SmartCAT basado en la nube. SmartCAT, aunque iguala en funcionalidad a Trados Studio y MemoQ, ofrece una experiencia de aprendizaje intuitiva, ya que incluye un sistema de formación en traducción integrado, una ventaja importante para los traductores principiantes. El artículo también identifica los retos que plantea el dominio de los sistemas de traducción asistida por ordenador y esboza sus perspectivas de desarrollo futuro.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Aliya Abdrakhmanova, Kazan Federal University

Kazan Federal University, Kazan – Russia. Candidate of Sciences, Associate Professor at Department of Practice and Theory of Translation.

Marina Vinnikova, Kazan Federal University

Kazan Federal University, Kazan – Russia. Candidate of Sciences, Associate Professor at Department of Practice and Theory of Translation.

Elena Semushina, Kazan Federal University

Kazan Federal University, Kazan – Russia. Candidate of Sciences, Associate Professor at Department of Practice and Theory of Translation.

Guzel Fassakhova, Kazan State Agrarian University

Kazan State Agrarian University, Kazan – Russia. Candidate of Sciences, Associate Professor at Department of Foreign Languages.

Liliya Islamova, Kazan State Agrarian University

Kazan State Agrarian University, Kazan – Russia. Senior Teacher at the Department of Foreign Languages.

Elena Slepneva, Kazan National Research Technological University

Kazan National Research Technological University, Kazan – Russia. Candidate of Sciences, Associate Professor at Department of Service Technologies.

Citas

Alfuraih, R. F. (2020). The undergraduate learner translator corpus: A new resource for translation studies and computational linguistics. Language Resources and Evaluation, 54(3), 801–830. https://doi.org/10.1007/s10579-019-09472-6

Appakova-Shogina, N., Kondratiev, K., Saykina, G., & Shammazova, E. (2024). Digital socialization in the educational environment: Hermeneutics of subjectivity. Revista Conrado, 20(101), 134–140.

Arcan, M., Turchi, M., Tonelli, S., & Buitelaar, P. (2017). Leveraging bilingual terminology to improve machine translation in a CAT environment. Natural Language Engineering, 23(5), 763–788. https://doi.org/10.1017/S1351324917000195

Besschetnova, O., Tsyglakova, E., & Vikulov, A. (2024). Internet addiction and network identity: Development characteristics in young students. Educação & Formação, 9, e14244. https://doi.org/10.25053/redufor.v9.e14244

Bowker, L. (2019). Machine translation literacy: Academic libraries' role. Proceedings of the Association for Information Science and Technology, 56(1), 618–619. https://doi.org/10.1002/pra2.108

Brynjolfsson, E., Hui, X., & Liu, M. (2019). Does machine translation affect international trade? Evidence from a large digital platform. Management Science, 65(12), 5449–5460. https://doi.org/10.1287/mnsc.2019.3388

Çetiner, C. (2018). Analyzing the attitudes of translation students towards CAT (computer-aided translation) tools. Journal of Language and Linguistic Studies, 14(1), 153–161.

El-Rahman, S. A., El-Shishtawy, T. A., & El-Kammar, R. A. (2018). A knowledge-based machine translation using AI technique. International Journal of Software Innovation, 6(3), 79–92. https://doi.org/10.4018/IJSI.2018070106

Garbovsky, N. K., & Kostikova, O. I. (2019). Intellekt dlya perevoda: Iskusnyy ili iskusstvennyy? [Intelligence in translation: Artful and artificial?]. Moscow University Translation Studies Bulletin, (4), 3–25.

Gudkov, N. N. (2022). Iskusstvennyy intellekt vs lichnost' perevodchika: Problema zameny zhivogo spetsialista tekhnologiyami budushchego v oblasti perevoda [Artificial intelligence vs. the translator’s personality: The problem of replacing human specialists with future translation technologies]. In Aktual'nyye problemy pedagogiki, psikhologii i perevodovedeniya (pp. 188–195). Asterion.

Han, B. (2020). Translation, from pen-and-paper to computer-assisted tools (CAT tools) and machine translation (MT). Proceedings, 63(1), 56. https://doi.org/10.3390/proceedings2020063056

Juan, L., & Yahaya, N. B. (2019). Research on the application of computer-aided translation to translation teaching. International Journal of Academic Research in Progressive Education and Development, 8(4), 795–804. https://doi.org/10.6007/ijarped%2Fv8-i4%2F6722

Karlgren, K., Lakkala, M., Toom, A., Ilomäki, L., Lahti-Nuuttilla, P., & Muukkonen, H. (2020). Assessing the learning of knowledge work competence in higher education: Cross-cultural translation and adaptation of the Collaborative Knowledge Practices Questionnaire. Research Papers in Education, 35(1), 8–22. https://doi.org/10.1080/02671522.2019.1677752

Karpińska, P. (2017). Computer-aided translation: Possibilities, limitations and changes in the field of professional translation. Journal of Education Culture and Society, 2, 133–142. https://doi.org/10.15503/jecs20172.133.142

Kashkin, V., & Haladay, D. J. (2024). Automated text analysis methods to identify the individual structure of motivation for sports and a healthy lifestyle. BIO Web of Conferences, 120, 01044. https://doi.org/10.1051/bioconf/202412001044

Kolin, K. K., Khoroshilov, A. A., Nikitin, Y. V., & Pshenichny, S. I. (2021). Iskusstvennyy intellekt v tekhnologiyakh mashinnogo perevoda [Artificial intelligence in machine translation technologies]. Social Innovations and Social Sciences, (2), 64–80. https://doi.org/10.31249/snsn/2021.02.05

Kubrak, V. (2023). Limitations of the scope of exclusive rights in relation to results created using artificial intelligence technologies. Legal Bulletin, 3(7), 121–129. https://doi.org/10.5281/zenodo.11189432

Levit, D. (2024). The legal regime of the results created by artificial intelligence technologies. Legal Bulletin, 2(9), 108–119. https://doi.org/10.5281/zenodo.12683332

Litwinowa, M., Gasanbekov, S., Lawrencenko, S., Shtukareva, E., Borodina, M., & Golubeva, T. (2022). Improving the stylistic and grammar skills of future translators, depending on the use of electronic editors and methods of working with the text in the translation process. Revista Conrado, 18(86), 125–130.

Osipov, M. Y. (2023). K voprosu ob osobennostyakh formulirovaniya i ispol'zovaniya testa T'yuringa dlya Chat GPT [On the question of the specifics of the formulation and use of the Turing test for ChatGPT]. Programmnyye sistemy i vychislitel'nyye metody, (4), 1–16. https://doi.org/10.7256/2454-0714.2023.4.68680

Pankratova, A. V. (2023). Problema dizayna kak metayazyka informatsionnogo prostranstva [The problem of design as a metalanguage of the information space]. Culture and Art, (12), 1–11. https://doi.org/10.7256/2454-0625.2023.12.68776

Parsa, R. N. (2021). Trends in e-tools and resources for translators and interpreters. Translation & Interpreting, 13(2), 183–186. https://doi.org/10.12807/ti.113202.2021.r01

Rarenko, M. B. (2021). Machine translation: From “rule-based translation” to neural translation (review). Social and Human Sciences: Domestic and Foreign Literature, (3), 70–79.

Safiullin, M., Gataullina, A., & Yelshin, L. (2024). Comparative analysis of higher education and science in Russia and Japan: Key development features. Revista Conrado, 20(101), 187–197.

Sultonova, L., Vasyukov, V., & Kirillova, E. (2023). Concepts of legal personality of artificial intelligence. Lex Humana, 15(3), 283–295. Retrieved from https://seer.ucp.br/seer/index.php/LexHumana/article/view/2596

Thawabteh, M. A. (2018). Complementarity between translation memories and computer-aided translation tools: Implications for translator training. SKASE Journal of Translation and Interpretation, 11(2), 2–15.

Ukolova, L. I., & Afanasyev, V. V. (2023). Pedagogical potential of the application of computer educational programs in fine arts lessons. Anthropological Didactics and Upbringing, 6(1), 21–30.

Vandepitte, S., & Lefever, E. (2018). Translation as a multilingual activity in the digital era. Revue française de linguistique appliquée, 23(2), 59–72. https://doi.org/10.3917/rfla.232.0059

Xu, Y. (2020). The application and practice of computer-aided translation in English teaching. Computer-Aided Design & Applications, 20(12), 216–230.

Zhilkibaeva, R., Avazova, S., Qahhorova, M., Myrksina, Y., & Tretyak, E. (2024). Impact of cloud technology implementation in the educational process. Revista Conrado, 20(99), 387–392.

Publicado

16/12/2025

Cómo citar

Abdrakhmanova, A., Vinnikova, M., Semushina, E., Fassakhova, G., Islamova, L., & Slepneva, E. (2025). Aplicación de sistemas de traducción automática mediante herramientas de inteligencia artificial para la formación de estudiantes universitarios en traducción escrita. Revista on Line De Política E Gestão Educacional, 29(00), e025109. https://doi.org/10.22633/rpge.v29i00.20793

Número

Sección

Ensaios e Comunicação Cien´tifica