Proporcionar un modelo para medir y aumentar la efectividad del aprendizaje en los sistemas educativos virtuales (electrónicos)

Autores/as

DOI:

https://doi.org/10.22633/rpge.v25iesp.6.16123

Palabras clave:

E-learning, Sistemas tradicionales, Educación, Sistemas de e-learning

Resumen

El objetivo principal de los sistemas virtuales o e-learning, como los sistemas tradicionales basados ​​en la presencia física, es transferir el máximo de conceptos de las fuentes publicadas, especialmente del profesor, al receptor del conocimiento. La mejora en este proceso solo es posible si el logro de la meta, o en otras palabras, la efectividad del proceso de transferencia de conocimiento, se mide de manera adecuada y válida. Si bien se han propuesto diferentes modelos para medir la efectividad de la educación en los sistemas tradicionales, los sistemas educativos nuevos y virtuales tienen diferencias fundamentales con los tipos anteriores que hacen inadecuado el uso de esos modelos. En este artículo, considerando las características específicas de los sistemas de e-learning, se ha desarrollado un modelo para medir su efectividad, enfatizando en medir el aprendizaje en lugar de medir la educación. En este modelo, se identifican los factores que afectan el aprendizaje en los sistemas de e-learning y se deriva una ecuación preliminar para determinar su relación.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Dmitry M. Benin, FSBI HE RSAU-Moscow Agricultural Academy named after K.A. Timiryazev, Moscow – Russia

PhD in engineering, Associate Professor, Acting Director of the Institute of Melioration, Water Management and Construction named after A.N. Kostyakov.

Pavel A. Mikheev, RSAU - Moscow Agricultural Academy named after K.A. Timiryazev, Moscow – Russia

Doctor of engineering, Professor, Head of the Department of Agricultural Construction and Expertise of Real Estate Objects at the Federal State Budgetary Institution of Higher Education.

Vladimir P. Borovskoy, FSBEI HE Donskoy SAU, Russia

PhD in engineering, Associate Professor, Associate Professor of the Department of Water Supply and Use of Water Resources, Novoсherkassk Engineering and Reclamation Institute named after A.K. Kortunov.

Citas

BOROVSKOY, V. P. Inlet portals of fish passages and fish passage-spawning canals. Abstract from the thesis by PhD in engineering. - Novocherkassk, 1990. 28 p.

BOROVSKOY, V. P.; TERNOVOY, A. N. Optimization of the entrance part of the gravity fish outlet of the fish protection structure of the water intake. Melioration as a driver of AIC modernization in the context of climate change. In: INTERN. SCIENTIFIC-PRACTICAL INTERNET CONFERENCE, 2., 2021, Novocherkassk. Proceedings […]. Novocherkassk: Lik, 2021.

CHUGAEV, R. R. Hydraulic engineering structures. Spillway dams. Textbook for universities. Moscow: High school, 1978. 352 p.

LARINIER, M.; TRAVADE, F. The development and evaluation of downstream bypasses for juvenile salmonids at small hydroelectric plants in France. In: ODEH, M. Innovations in fish passage technology. American Fisheries Society, 1999. p. 25-42.

LOYTSYANSKY, L. G. Mechanics of liquid and gas. Textbook for universities. 6. ed. rev. and add. Moscow: Nauka, 1987. 840 p.

MIKHEEV, P. A.; BOROVSKOY, V. P. Theoretical substantiation of vortex structure parameters of free turbulence (Novocherkassk engineer-melior. institute named after A.K. Kortunov, Novocherkassk, Rostov region). In: Results of Science. Selected Proceedings of the All-Russian Conference on Science and Technology. Moscow: RAS, 2015. n. 18, 231 p.

MIKHEEV, P. A.; PERELYGIN, A. I. Assessment of the fish protection structure state of the Donskoy main channel for the purpose of reconstruction. Hydrotechnical construction, n. 9. p. 41-44, 2007.

MIKHEEV, P. A.; PERELYGIN, A. I. Fish outlets of hydraulic structures. Rostov on Don: Phoenix; Novocherkassk FGBEI HPE NSMA, 2014. 265 p.

MIKHEEV, P. A.; SHKURA, V. N.; LYAPOTA, T. L. Diversion of juvenile fish at the fish protection structure of the water intake of the Novocherkasskaya SDPP. Protection and restoration of hydroflora and ichthyofauna. Proceedings of AVN, Novocherkassk, n. 1, p. 89-93, 1997.

PATRASHEV, A. N. Hydromechanics. Moscow: Naval publishing house, 1953. 720 p.

PAVLOV, D. S.; PAKHORUKOV A. M. Biological bases of fish protection from falling into water intake facilities. 2. ed. rev. and add. Moscow: Light and food industry, 1983. 264 p.

PRANDTL, L. Hydroaeromechanics. Izhevsk: Research Center "Regular and Chaotic Dynamics", 2000. 576 p.

PROTECTED fish diversion systems from fish protection devices. Melioration and water management. TsBNTI of the USSR Ministry of Water Resources, n. 18, p. 9-15, 1986.

SAMOILOVICH, G. S. Hydrogasdynamics: A textbook for university students studying the profession of "Turbo building". 2. ed. rev. and add. Moscow: Mashinostroenie, 1990. 384 p.

SCHLICHTING, G. The boundary layer theory. Edited by L.G. Loytsyansky. Moscow: Nauka, 1969. 742 p.

SP101.1333.2012 Retaining walls, navigational locks, fish passages and fish protection structures. Updated edition of SNiP 2.06.07-87. rev. Moscow, 2012. Rev. n. 1.

UNITED STATES. Department of the Interior. Fish Protection at Water Diversions. A Guide for Planning and Designing Fish Exclusion Facilities. Denver, Colorado, 2006. 429 p.

ZAMARIN, E. A.; FANDEEV, V. V. Hydraulic engineering structures. Moscow: Kolos, 1965. 618 p.

Publicado

30/12/2021

Cómo citar

BENIN, D. M.; MIKHEEV, P. A.; BOROVSKOY, V. P. Proporcionar un modelo para medir y aumentar la efectividad del aprendizaje en los sistemas educativos virtuales (electrónicos). Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. esp.6, p. 3622–3636, 2021. DOI: 10.22633/rpge.v25iesp.6.16123. Disponível em: https://periodicos.fclar.unesp.br/rpge/article/view/16123. Acesso em: 14 may. 2024.

Artículos similares

<< < 1 2 3 

También puede {advancedSearchLink} para este artículo.